31 research outputs found

    Influence of the meandering channel geometry on the thermo-hydraulic performances of an intensified heatexchanger/reactor

    Get PDF
    In the global context of process intensification, heat exchanger/reactors are promising apparatuses to implement exothermic chemical syntheses. However, unlike heat exchange processes, the implementation of chemical syntheses requires to control the residence time to complete the chemistry. A way to combine the laminar regime (i.e. enough residence time) with a plug flow and the intensification of both heat and mass transfers is the corrugation of the reaction path. In this work, the experimental set-up is based on plate heat exchanger/reactor technology. 7 milli channel corrugated geometries varying the corrugation angle, the curvature radius, the developed length, the hydraulic diameter and the aspect ratio have been designed and experimentally characterized (heat transfer, mixing times, pressure drops, RTD). The objectives were to assess their respective performances to derive some correlations depending on the channel design. The results confirmed the benefits of the reaction channel corrugation. Heat and mass transfers have been intensified while maintaining a plug flow behavior in the usually laminar flow regime. Moreover, whatever the meandering channel’s curvature radius, the results highlighted the relevance of considering the Dean number as the scale-up parameter. This dimension less number, more than the Reynolds number, seems to govern the flow in the wavy channels

    Intensification of heat-transfer and mixing in heat exchanger-reactors by artificially generated streamwise vortices

    Get PDF
    International audienceCompact heat exchangers are well known for their ability to transfer a large amount of heat while retaining low volume and weight. The purpose of this paper is to study the potential of using this device as a mixer as well as a chemical reactor, generally called a multifunctional heat exchanger (MHE). Indeed, the question arises: can these geometries combine heat transfer and mixing in the same device? Such a technology would offer many potential advantages, such as better reaction control (through the thermal aspect [S. Ferrouillat, P. Tochon, H. Peerhossaini, D. Della Valle, Open-loop thermal control of exothermal chemical reactions in multifunctional heat exchangers, Int. J. Heat Mass Transfer, in press]), improved selectivity (through intensified mixing, more isothermal operation and shorter residence time, and sharper residence time distribution (RTD)), byproduct reduction, and enhanced safety.Several geometries of compact heat exchanger based on turbulence generation are available. This paper focuses on one type: vortex generators. The main objective is to contribute to the determination of turbulent flow inside various geometries by computational fluid dynamics methods. These enhanced industrial geometries are studied in terms of their thermal-hydraulic performance and macro-/micro-mixing ability [S. Ferrouillat, P. Tochon, H. Peerhossaini, Micromixing enhancement by turbulence: application to multifunctional heat exchangers, Chem. Eng. Process., in press]. The longitudinal vortices they generate in a channel flow turn the flow perpendicular to the main flow direction and enhance mixing between the fluid close to the fin and that in the middle of the channel. Two kinds of vortex generators are considered: a delta winglet pair and a rectangular winglet pair. For both, good agreement is obtained between numerical results and data in the literature. The vortex generator concept is found to be very efficient in terms of heat-transfer enhancement and macro-mixing. Nevertheless, the micro-mixing level is poor due to strong inhomogeneities: the vortex generator must be used as a heat-transfer enhancement device or as a static mixer for macro- and meso-mixing

    Characterization of the performances of an innovative heat-exchanger/reactor

    Get PDF
    The use of heat exchanger/reactors (HEX/reactors) is a promising way to overcome the barrier of poor heat transfer in batch reactors. However to reach residence time long enough to complete the chemistry,low Reynolds number has to be combined with both a plug flow behaviour and the intensification of heat and mass transfers. This work concerns the experimental approach used to characterize an innovative HEX/reactor. The pilot is made of three process plates sandwiched between five utility plates. The process stream flows in a 2 mm corrugated channel. Pressure drop and residence time distribution characterizations aim at studying the flow hydrodynamics. Identified Darcy correlations point out the transition between laminar and turbulent flow around a Reynolds number equal to 200. Moreover the flow behaves like a quasi-plug flow (Pe > 185). The heat transfer and mixing time have also been investigated. The ratio between the reaction kinetics and the mixing time is over 100 and the intensification factor ranges from5000 to 8000 kW m−3K−1. As a consequence, no limitations were identified which allows the implementation of an exothermic reaction. It has been successfully performed under severe temperature and concentration conditions, batchwise unreachable. Thus, it highlights the interest of using this continuous HEX/reactor

    Rapic project: toward a new generation of inexpensive heat exchanger-reactors for process intensification

    Get PDF
    Process intensification (PI) in chemical production is a major concern of chemical manufacturers. This alternative technology involves transposing syntheses into continuous plug flow reactors with process intensification, leading to a multifunctional heat exchanger-reactor. In this context, the RAPIC R&D project aims to develop an innovative low-cost component (in the 10 kg/hour range). This project deals with the design from the local to the global scale and with testing, from elementary mock-ups to pilot scale. The present paper gives a detailed description of this research project and presents the main results on specification and definition of the reaction channel and the first simple mock-ups

    Implementation of ‘chaotic’ advection for viscous fluids in heat exchanger/reactors

    Get PDF
    When viscous fluids are involved, laminar hydraulic conditions and heat and mass transfer intensification are conflicting phenomena. A channel geometry based on Split-And-Recombine (SAR) patterns is experimentally investigated. The principle implements the Baker’s transformation and ‘chaotic’ structures are generated to promote heat and mass transfer. This work assesses the energy efficiency of different heat exchanger/reactors integrating these SAR patterns. The heat transfer capacity is assessed and compared with the energy consumption of each mock-up. It is sensitive to the cooling mode and to the number of SAR patterns per length unit as well. The continuous oxidation of sodium thiosulfate with hydrogen peroxide has been implemented. Conversions up to 99% are reached according to the utility fluid temperature and the residence time. Finally, the whole performances of the SAR geometries are compared to a plate-type heat exchanger/reactor with a corrugated pattern. The more viscous the fluid, the more the energy efficiency of the SAR design increases compared to the corrugated design because of the balance between advection and diffusion mechanisms. The interest in terms of energy efficiency in working with SAR heat exchanger/reactor appears from Reynolds numbers below 50
    corecore