25 research outputs found

    Potent Antifungal Properties of Dimeric Acylphloroglucinols from Hypericum mexicanum and Mechanism of Action of a Highly Active 3′Prenyl Uliginosin B

    Get PDF
    9openInternationalBothThe success of antifungal therapies is often hindered by the limited number of available drugs. To close the gap in the antifungal pipeline, the search of novel leads is of primary importance, and here the exploration of neglected plants has great promise for the discovery of new principles. Through bioassay-guided isolation, uliginosin B and five new dimeric acylphloroglucinols (uliginosins C-D, and 3′prenyl uliginosins B-D), besides cembrenoids, have been isolated from the lipophilic extract of Hypericum mexicanum. Their structures were elucidated by a combination of Liquid Chromatography - Mass Spectrometry LC-MS and Nuclear Magnetic Resonance (NMR) measurements. The compounds showed strong anti-Candida activity, also against fluconazole-resistant strains, with fungal growth inhibition properties at concentrations ranging from 3 to 32 µM, and reduced or absent cytotoxicity against human cell lines. A chemogenomic screen of 3′prenyl uliginosin B revealed target genes that are important for cell cycle regulation and cytoskeleton assembly in fungi. Taken together, our study suggests dimeric acylphloroglucinols as potential candidates for the development of alternative antifungal therapiesopenTocci, N.; Weil, T.; Perenzoni, D.; Moretto, M.; Nürk, N.; Madriñán, S.; Ferrazza, R.; Guella, G.; Mattivi, F.Tocci, N.; Weil, T.; Perenzoni, D.; Moretto, M.; Nürk, N.; Madriñán, S.; Ferrazza, R.; Guella, G.; Mattivi, F

    Population genomics reveals evolution and variation of Saccharomyces cerevisiae in the human and insects gut

    Get PDF
    The quest to discover the variety of ecological niches inhabited by Saccharomyces cerevisiae has led to research in areas as diverse as wineries, oak trees, and insect guts. The discovery of fungal communities in the human gastrointestinal tract suggested the host's gut as a potential reservoir for yeast adaptation. Here we report the existence of yeast populations associated with the human gut (HG) that differ from those isolated from other human body sites. Phylogenetic analysis on 12 microsatellite loci and 1,715 combined CDSs from whole‐genome sequencing revealed three subclusters of HG strains with further evidence of clonal colonization within the host's gut. The presence of such subclusters was supported by other genomic features, such as copy number variation, absence/introgressions of CDSs and relative polymorphism frequency. Functional analysis of CDSs specific of the different subclusters suggested possible alterations in cell wall composition and sporulation features. The phenotypic analysis combined with immunological profiling of these strains further showed that sporulation was related with strain‐specific genomic characteristics in the immune recognition pattern. We conclude that both genetic and environmental factors involved in cell wall remodeling and sporulation are the main drivers of adaptation in S. cerevisiae populations in the human gut

    Produzione di xantoni da radici avventizie di Hypericum perforatum subsp. angustifolium ed attività antifungina

    No full text
    Hypericum perforatum is a well-known medicinal plant which contains a wide variety of metabolites, including xanthones, which have a wide range of biological properties, including antifungal activity. In the present study, we evaluated the capability of roots regenerated from calli of H. perforatum subsp. angustifolium to produce xanthones. The most represented xanthones were isolated, purified, and spectroscopically characterized. Antifungal activity of the total root extracts was tested against a broad panel of human fungal pathogen strains (30 Candida species, 12 Cryptococcus neoformans, and 16 dermatophytes); this activity significantly increased when using chitosan

    Chitosan enhances xanthone production in Hypericum perforatum subsp. angustifolium cell cultures

    No full text
    Hypericum perforatum is an important medicinal plant containing numerous biologically active compounds. The effect of chitosan elicitation on xanthone biosynthesis in calli and in cell suspension cultures of H. perforatum subsp. angustifolium was evaluated. Elicited cell cultures showed an increase in xanthone production and a simultaneous decrease in flavonoid production. Chitosan also induced the production of 1,7-dihydroxyxanthone (euxanthone) and cadensin G, which were not detected in either the calli nor the non-elicited cell cultures. 1,7-Dihydroxyxanthone was in part (21%) released in the culture medium
    corecore