213 research outputs found
Cigarette Smoke Initiates Oxidative Stress-Induced Cellular Phenotypic Modulation Leading to Cerebral Aneurysm Pathogenesis.
OBJECTIVE: Cigarette smoke exposure (CSE) is a risk factor for cerebral aneurysm (CA) formation, but the molecular mechanisms are unclear. Although CSE is known to contribute to excess reactive oxygen species generation, the role of oxidative stress on vascular smooth muscle cell (VSMC) phenotypic modulation and pathogenesis of CAs is unknown. The goal of this study was to investigate whether CSE activates a NOX (NADPH oxidase)-dependent pathway leading to VSMC phenotypic modulation and CA formation and rupture.
APPROACH AND RESULTS: In cultured cerebral VSMCs, CSE increased expression of NOX1 and reactive oxygen species which preceded upregulation of proinflammatory/matrix remodeling genes (MCP-1, MMPs [matrix metalloproteinase], TNF-α, IL-1ÎČ, NF-ÎșB, KLF4 [Kruppel-like factor 4]) and downregulation of contractile genes (SM-α-actin [smooth muscle α actin], SM-22α [smooth muscle 22α], SM-MHC [smooth muscle myosin heavy chain]) and myocardin. Inhibition of reactive oxygen species production and knockdown of NOX1 with siRNA or antisense decreased CSE-induced upregulation of NOX1 and inflammatory genes and downregulation of VSMC contractile genes and myocardin. p47phox-/- NOX knockout mice, or pretreatment with the NOX inhibitor, apocynin, significantly decreased CA formation and rupture compared with controls. NOX1 protein and mRNA expression were similar in p47phox-/- mice and those pretreated with apocynin but were elevated in unruptured and ruptured CAs. CSE increased CA formation and rupture, which was diminished with apocynin pretreatment. Similarly, NOX1 protein and mRNA and reactive oxygen species were elevated by CSE, and in unruptured and ruptured CAs.
CONCLUSIONS: CSE initiates oxidative stress-induced phenotypic modulation of VSMCs and CA formation and rupture. These molecular changes implicate oxidative stress in the pathogenesis of CAs and may provide a potential target for future therapeutic strategies
Dietary Fat Interacts with PCBs to Induce Changes in Lipid Metabolism in Mice Deficient in Low-Density Lipoprotein Receptor
There is evidence that dietary fat can modify the cytotoxicity of polychlorinated biphenyls (PCBs) and that coplanar PCBs can induce inflammatory processes critical in the pathology of vascular diseases. To test the hypothesis that the interaction of PCBs with dietary fat is dependent on the type of fat, low-density lipoprotein receptorâdeficient (LDL-R(â/â)) mice were fed diets enriched with either olive oil or corn oil for 4 weeks. Half of the animals from each group were injected with PCB-77. Vascular cell adhesion molecule-1 (VCAM-1) expression in aortic arches was non-detectable in the olive-oilâfed mice but was highly expressed in the presence of PCB-77. PCB treatment increased liver neutral lipids and decreased serum fatty acid levels only in mice fed the corn-oilâenriched diet. PCB treatment increased mRNA expression of genes involved in inflammation, apoptosis, and oxidative stress in all mice. Upon PCB treatment, mice in both olive- and corn-oilâdiet groups showed induction of genes involved in fatty acid degradation but with up-regulation of different key enzymes. Genes involved in fatty acid synthesis were reduced only upon PCB treatment in corn-oilâfed mice, whereas lipid transport/export genes were altered in olive-oilâfed mice. These data suggest that dietary fat can modify changes in lipid metabolism induced by PCBs in serum and tissues. These findings have implications for understanding the interactions of nutrients with environmental contaminants on the pathology of inflammatory diseases such as atherosclerosis
âPleasure stolen from the poorâ: community discourse on the âtheftâ of a Banksy
The removal of street art from community walls for private auction is a morally problematic yet legal action. This paper examines community reactions to the removal of Banksyâs No Ball Games for private auction. 500 unique reader comments on online newspaper articles reporting this controversial event were collected and analysed. An emerging set of urban moral codes was used to position street art as a valuable community asset rather than as an index of crime and social decay. An older discourse depicted No Ball Games as unlawful graffiti that was rightfully removed. Here, the operations of âthe policeâ (RanciĂšre, 1999) in the distribution of the sensible are evident in the assertions that validate and depoliticize the removal of No Ball Games. This repertoire was used to attribute responsibility for the workâs removal to deterministic external forces, while reducing the accountability attributable to those responsible for the removal of the work. A contrasting anti removal repertoire depicted street art as a gift to the community, and its removal as a form of theft, and a source of harm to the community. The pro-removal repertoire incorporates and depoliticizes elements of the anti-removal repertoire, by acknowledging the moral wrong of the removal, but yielding to the legal rights of the wall owners to sell the work; and by recognizing the status of street art as valuable, but asserting that the proper place for art is a museum. The anti-removal repertoire counters elements of the pro-removal repertoire, by acknowledging the illegality of street art, but containing this to the initial act of making unsanctioned marks on a wall, after which point the work becomes the property of the community it is located within. This analysis reveals an emergent set of urban moral codes that positions a currently legal action as a form of criminal activity
Potential Impacts of PCBs on Sediment Microbiomes in a Tropical Marine Environment
Within the tropical marine study site of GuĂĄnica Bay, Puerto Rico, polychlorinated biphenyls (PCBs) are subjected to coastal and oceanic currents coupled with marine microbial and geochemical processes. To evaluate these processes a hydrodynamic model was developed to simulate the transport of PCBs within nearshore and offshore marine areas of GuĂĄnica Bay. Material transport and circulation information from the model were matched with measurements from samples collected from within the bay. These samples, consisting of both intertidal and submerged sediments, were analyzed for physical characteristics (organic carbon, grain size, and mineralogy), microbial characteristics (target bacteria levels and microbial community analyses), presence of PCBs, and PCB-degrading enzymes. Results show that the bay geometry and bathymetry limit the mixing of the extremely high levels of PCBs observed in the eastern portion of the bay. Bay bottom sediments showed the highest levels of PCBs and these sediments were characterized by high organic carbon content and finer grain size. Detectable levels of PCBs were also observed within sediments found along the shore. Microbes from the bay bottom sediments showed a greater relative abundance of microbes from the Chloroflexi, phylum with close phylogenetic associations with known anaerobic PCB-degrading organisms. Based on quantitative PCR measurement of the biphenyl dioxygenase gene, the intertidal sediments showed the greatest potential for aerobic PCB degradation. These results elucidate particular mechanisms of PCBâs fate and transport in coastal, tropical marine environments
Effect of pomiferin administration on kidney ischaemia-reperfusion injury in rats
The aim of the study was to analyse protective effects of different doses of pomiferin in therapy of reperfusion injury. Rats were randomly divided into five groups (n=10). One group was intact. Three medicated groups and one placebo group were subjected to ischaemia and reperfusion of the left kidney. Pomiferin was administrated by single gastric gavage in 2 ml of 0.5% Avicel solution in doses of 5, 10 and 20 mg/kg. The placebo group was given only Avicel solution. On day 15, all the animals were exsanguinated and the reperfused kidneys were recovered. Selected biochemical markers were assessed in blood: antioxidative enzymes, total antioxidative capacity, malondialdehyde, creatinine, urea and uric acid. Creatinine, urea and total proteins were analysed in urine and 24-hour diuresis was recorded. The kidney tissue samples were used for histopathological examination
Dexmedetomidine is neuroprotective in an in vitro model for traumatic brain injury
<p>Abstract</p> <p>Background</p> <p>The α<sub>2</sub>-adrenoreceptor agonist dexmedetomidine is known to provide neuroprotection under ischemic conditions. In this study we investigated whether dexmedetomidine has a protective effect in an <it>in vitro </it>model for traumatic brain injury.</p> <p>Methods</p> <p>Organotypic hippocampal slice cultures were subjected to a focal mechanical trauma and then exposed to varying concentrations of dexmedetomidine. After 72 h cell injury was assessed using propidium iodide. In addition, the effects of delayed dexmedetomidine application, of hypothermia and canonical signalling pathway inhibitors were examined.</p> <p>Results</p> <p>Dexmedetomidine showed a protective effect on traumatically injured hippocampal cells with a maximum effect at a dosage of 1 ΌM. This effect was partially reversed by the simultaneous administration of the ERK inhibitor PD98059.</p> <p>Conclusion</p> <p>In this TBI model dexmedetomidine had a significant neuroprotective effect. Our results indicate that activation of ERK might be involved in mediating this effect.</p
Total and corrected antioxidant capacity in hemodialyzed patients
BACKGROUND: Oxidative stress may play a critical role in the vascular disease of end stage renal failure and hemodialysis patients. Studies, analyzing either discrete analytes and antioxidant substances, or the integrated total antioxidant activity of human plasma during hemodialysis, give contradictory results. METHODS: Recently, we have introduced a new automated method for the determination of Total Antioxidant Capacity (TAC) of human plasma. We have serially measured TAC and corrected TAC (cTAC: after subtraction of the interactions due to endogenous uric acid, bilirubin and albumin) in 10 patients before the onset of the dialysis session, 10 min, 30 min, 1 h, 2 h and 3 h into the procedure and after completion of the session. RESULTS: Our results indicate that TAC decreases, reaching minimum levels at 2 h. However, corrected TAC increases with t(1/2 )of about 30 min. We then repeated the measurements in 65 patients undergoing dialysis with different filters (36 patients with ethylene vinyl alcohol copolymer resin filter -Eval-, 23 patients with two polysulfone filters -10 with F6 and 13 with PSN140-, and 6 patients with hemophan filters). Three specimens were collected (0, 30, 240 min). The results of this second group confirm our initial results, while no significant difference was observed using either filter. CONCLUSIONS: Our results are discussed under the point of view of possible mechanisms of modification of endogenous antioxidants, and the interaction of lipid- and water-soluble antioxidants
HIV-1 Tat protein alter the tight junction integrity and function of retinal pigment epithelium: an in vitro study
<p>Abstract</p> <p>Background</p> <p>How HIV-1 enter into the eyes remains obscure. We postulated that HIV-1 Tat protein can alter the expression of specific tight-junction proteins and disturb the blood retinal barrier, and contributes to HIV trafficking into the eyes. This study is to determine the effects of HIV-1 Tat proteins on the barrier function and tight-junction protein expression of retinal pigment epithelial cell (RPE).</p> <p>Methods</p> <p>A human RPE cell line (D407) cultured on microporous filter-supports was used. After treating with HIV-1 Tat protein, transepithelial electrical resistance (TER) of confluent RPE cells was measured by epithelial voltmeter. The permeability of the RPE cells to sodium fluorescein was measured. The expressions of the occludin and claudins were determined by real-time polymerase chain reaction, immunofluorescence, and Western blot analysis. Activation of ERK1/2 was detected by Western blot analysis with specific antiphospho protein antibodies. NF-ÎșB DNA binding activity was determined by transcription factor assay. Specific pharmacologic inhibitors directed against the MAPKs were used to analyze the signaling involved in barrier destruction of RPE cells exposed to HIV-1 Tat.</p> <p>Results</p> <p>Treating cultured human retinal pigment epithelial cells with 100 nM Tat for 24 hours increased the permeability and decreased the TER of the epithelial monolayer. HIV-1 Tat also disrupted and downregulated the tight-junction proteins claudin-1, claudin-3, and claudin-4 in these cells, whereas claudin-2 was upregulated, and the expression of occludin was unaffected. HIV-1 Tat protein also induced activation of ERK1/2 and NF-ÎșB. HIV-1 Tat protein induced barrier destruction, changes in expression of TJs, and activation of ERK1/2 and NF-ÎșB were abrogated by inhibitor of ERK1/2 and NF-ÎșB.</p> <p>Conclusion</p> <p>HIV-1 Tat protein causes increases in the paracellular permeability of RPE cells in vitro concomitant with changes in expression of certain transmembrane proteins associated with the tight junction. The effects of HIV-1 Tat on barrier function of the RPE may be mediated by ERK MAPK and NF-ÎșB activation, which may represent potential targets for novel therapeutic approaches for the retinopathy induced by HIV infection.</p
Chronic NMDA administration to rats increases brain pro-apoptotic factors while decreasing anti-Apoptotic factors and causes cell death
<p>Abstract</p> <p>Background</p> <p>Chronic <it>N</it>-Methyl-d-aspartate (NMDA) administration to rats is reported to increase arachidonic acid signaling and upregulate neuroinflammatory markers in rat brain. These changes may damage brain cells. In this study, we determined if chronic NMDA administration (25 mg/kg i.p., 21 days) to rats would alter expression of pro- and anti-apoptotic factors in frontal cortex, compared with vehicle control.</p> <p>Results</p> <p>Using real time RT-PCR and Western blotting, chronic NMDA administration was shown to decrease mRNA and protein levels of anti-apoptotic markers Bcl-2 and BDNF, and of their transcription factor phospho-CREB in the cortex. Expression of pro-apoptotic Bax, Bad, and 14-3-3ζ was increased, as well as Fluoro-Jade B (FJB) staining, a marker of neuronal loss.</p> <p>Conclusion</p> <p>This alteration in the balance between pro- and anti-apoptotic factors by chronic NMDA receptor activation in this animal model may contribute to neuronal loss, and further suggests that the model can be used to examine multiple processes involved in excitotoxicity.</p
Nicotine Protects Kidney from Renal Ischemia/Reperfusion Injury through the Cholinergic Anti-Inflammatory Pathway
Kidney ischemia/reperfusion injury (I/R) is characterized by renal dysfunction and tubular damages resulting from an early activation of innate immunity. Recently, nicotine administration has been shown to be a powerful inhibitor of a variety of innate immune responses, including LPS-induced toxaemia. This cholinergic anti-inflammatory pathway acts via the α7 nicotinic acetylcholine receptor (α7nAChR). Herein, we tested the potential protective effect of nicotine administration in a mouse model of renal I/R injury induced by bilateral clamping of kidney arteries. Renal function, tubular damages and inflammatory response were compared between control animals and mice receiving nicotine at the time of ischemia. Nicotine pretreatment protected mice from renal dysfunction in a dose-dependent manner and through the α7nAChR, as attested by the absence of protection in α7nAChR-deficient mice. Additionally, nicotine significantly reduced tubular damages, prevented neutrophil infiltration and decreased productions of the CXC-chemokine KC, TNF-α and the proinflammatory high-mobility group box 1 protein. Reduced tubular damage in nicotine pre-treated mice was associated with a decrease in tubular cell apoptosis and proliferative response as attested by the reduction of caspase-3 and Ki67 positive cells, respectively. All together, these data highlight that nicotine exerts a protective anti-inflammatory effect during kidney I/R through the cholinergic α7nAChR pathway. In addition, this could provide an opportunity to overcome the effect of surgical cholinergic denervation during kidney transplantation
- âŠ