1,119 research outputs found

    Hybrid Resolvent Kernel Calibration Technique for Microwave Imaging Systems

    Get PDF
    This work assesses a hybrid calibration technique that uses together measured and simulated data to compensate modeling errors such as fabrication tolerances and positioning inaccuracies. Here, as a proof-of-concept, it is considered a virtual microwave imaging experiment of a human brain stroke condition. The test involves a full-wave software based on the finite element method and 3-D highly realistic system models, including a set of 24 monopoles immersed in a solid brick-shaped matching medium and a single-cavity anthropomorphic head phantom. The studied case shows that under favorable assumptions, the calibration procedure improves the quality of the retrieved images compared to the non-calibrated-kernel approach

    Left-ventricular epi- and endocardium extraction from 3D ultrasound images using an automatically constructed 3D ASM

    Get PDF
    © 2014 Taylor & Francis.In this paper, we propose an automatic method for constructing an active shape model (ASM) to segment the complete cardiac left ventricle in 3D ultrasound (3DUS) images, which avoids costly manual landmarking. The automatic construction of the ASM has already been addressed in the literature; however, the direct application of these methods to 3DUS is hampered by a high level of noise and artefacts. Therefore, we propose to construct the ASM by fusing the multidetector computed tomography data, to learn the shape, with the artificially generated 3DUS, in order to learn the neighbourhood of the boundaries. Our artificial images were generated by two approaches: a faster one that does not take into account the geometry of the transducer, and a more comprehensive one, implemented in Field II toolbox. The segmentation accuracy of our ASM was evaluated on 20 patients with left-ventricular asynchrony, demonstrating plausibility of the approach

    Temporal diffeomorphic Free Form Deformation (TDFFD) applied to motion and deformation quantification of tagged MRI sequences

    Get PDF
    International audienceThis paper presents strain quantification results obtained from the Tagged Magnetic Resonance Imaging (TMRI) sequences acquired for the 1 st cardiac Motion Analysis Challenge (cMAC). We applied the Temporal Diffeomorphic Free Form Deformation (TDFFD) algorithm to the phantom and the 15 healthy volunteers of the cMAC database. The TDFFD was modified in two ways. First, we modified the similarity metric to incorporate frame to frame intensity differences. Second, on volunteer sequences, we performed the tracking backward in time since the first frames did not show the contrast between blood and myocardium, making these frames poor choices of reference. On the phantom, we propagated a grid adjusted to tag lines to all frames for visually assessing the influence of the different algorithmic parameters. The weight between the two metric terms appeared to be a critical parameter for making a compromise between good tag tracking while preventing drifts and avoiding tag jumps. For each volunteer, a volumet-ric mesh was defined in the Steady-State Free Precession (SSFP) image, at the closest cardiac time from the last frame of the tagging sequence. Uniform strain patterns were observed over all myocardial segments, as physiologically expected

    Open-ended coaxial probe measurements of complex dielectric permittivity in diesel-contaminated soil during bioremediation

    Get PDF
    In the bioremediation field, geophysical techniques are commonly applied, at lab scale and field scale, to perform the characterization and the monitoring of contaminated soils. We propose a method for detecting the dielectric properties of contaminated soil during a process of bioremediation. An open-ended coaxial probe measured the complex dielectric permittivity (between 0.2 and 20 GHz) on a series of six soil microcosms contaminated by diesel oil (13.5% Voil /Vtot ). The microcosms had different moisture content (13%, 19%, and 24% Vw/Vtot ) and different salinity due to the addition of nutrients (22 and 15 g/L). The real and the imaginary component of the complex dielectric permittivity were evaluated at the initial stage of contamination and after 130 days. In almost all microcosms, the real component showed a significant decrease (up to 2 units) at all frequencies. The results revealed that the changes in the real part of the dielectric permittivity are related to the amount of degradation and loss in moisture content. The imaginary component, mainly linked to the electrical conductivity of the soil, shows a significant drop to almost 0 at low frequencies. This could be explained by a salt depletion during bioremediation. Despite a moderate accuracy reduction compared to measurements performed on liquid media, this technology can be successfully applied to granular materials such as soil. The open-ended coaxial probe is a promising instrument to check the dielectric properties of soil to characterize or monitor a bioremediation process

    Wearable Microwave Imaging System for Brain Stroke Imaging

    Get PDF
    This paper presents the experimental validation of the detection capabilities of a low complexity wearable system designed for the imaging-based detection of brain stroke. The system approaches the electromagnetic inverse problem via a 3-D imaging algorithm based on the Born approximation and the Truncated Singular Value Decomposition (TSVD). For testing, flexible antennas with custom-made coupling-medium are prototyped and assessed in mimicked hemorrhagic and ischemic stroke conditions. The experiment emulates the clinical scenario using a single-tissue anthropomorphic head phantom and strokes with both 20 cm 3 and 60 cm 3 ellipsoid targets. The imaging kernel is computed via full-wave simulation of a virtual twin model. The results demonstrate the capabilities for detecting and estimating the stroke-affected area

    Fractal frontiers in cardiovascular magnetic resonance: towards clinical implementation

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.JCM: Higher Education Funding Council for England and the UK National Institute for Health Research, University College London, Biomedical Research Centre; GC: NIHR BRC University College London. DAB: Intramural research program, National Institutes of Health

    Prognostics health management: perspectives in engineering systems reliability prognostics

    Get PDF
    The Prognostic Health Management (PHM) has been asserting itself as the most promising methodology to enhance the effective reliability and availability of a product or system during its life-cycle conditions by detecting current and approaching failures, thus, providing mitigation of the system risks with reduced logistics and support costs. However, PHM is at an early stage of development, it also expresses some concerns about possible shortcomings of its methods, tools, metrics and standardization. These factors have been severely restricting the applicability of PHM and its adoption by the industry. This paper presents a comprehensive literature review about the PHM main general weaknesses. Exploring the research opportunities present in some recent publications, are discussed and outlined the general guide-lines for finding the answer to these issues.(undefined
    • …
    corecore