43 research outputs found

    Negro applicants to a child guidance clinic: an exploratory study of a year's intake

    Full text link
    Thesis (M.S.)--Boston UniversityThis study undertakes to explore ths general characteristics of a year's intake of Negro applicants to a child guidance clinic, for the purpose of gaining a better understanding of the socio-economic conditions of this group, the ways in which they arrive at a child guidance clinic, the reasons for which they come and the results of their initial contact. The study was conducted in the Child Guidance Clinic of the Boston City Hospital. This clinic draws a group of negroes sufficiently large to provide scope for an exploration of the background characteristics, the referral routes and the presenting problems of the group. A thorough description of the findings in these categories should result in increased knowledge about the salient features of this group, and some i of the inter-connections among these features. In addition, case-disposition will be examined because disposition is the end-point of intake service, and service is the ultimate concern of social work research

    Implementation and testing of a blackbox and a whitebox fuzzer for file compression routines

    Get PDF
    Fuzz testing is a software testing technique that has risen to prominence over the past two decades. The unifying feature of all fuzz testers (fuzzers) is their ability to somehow automatically produce random test cases for software. Fuzzers can generally be placed in one of two classes: black-box or white-box. Blackbox fuzzers do not derive information from a program\u27s source or binary in order to restrict the domain of their generated input while white-box fuzzers do. A tradeoff involved in the choice between blackbox and whitebox fuzzing is the rate at which inputs can be produced; since blackbox fuzzers need not do any thinking about the software under test to generate inputs, blackbox fuzzers can generate more inputs per unit time if all other factors are equal. The question of how blackbox and whitebox fuzzing should be used together for ideal economy of software testing has been posed and even speculated about, however, to my knowledge, no publically available study with the intent of characterizing an answer exists. The purpose of this thesis is to provide an initial exploration of the bug-finding characteristics of blackbox and whitebox fuzzers. A blackbox fuzzer is implemented and extended with a concolic execution program to make it whitebox. Both versions of the fuzzer are then used to run tests on some small programs and some parts of a file compression library

    Proof of Efficient Liquidity: A Staking Mechanism for Capital Efficient Liquidity

    Full text link
    The Proof of Efficient Liquidity (PoEL) protocol, designed for specialised Proof of Stake (PoS) consensus-based blockchains that incorporate intrinsic DeFi applications, aims to support sustainable liquidity bootstrapping and network security. This concept seeks to efficiently utilise budgeted staking rewards to attract and sustain liquidity through a risk-structuring engine and incentive allocation strategy, both of which are designed to maximise capital efficiency. The proposed protocol serves the dual objective of: (i) capital creation by attracting risk capital efficiently and maximising its operational utility for intrinsic DeFi applications, thereby asserting sustainability; and (ii) enhancing the adopting blockchain network's economic security by augmenting their staking (PoS) mechanism with a harmonious layer seeking to attract a diversity of digital assets. Finally, the protocol's conceptual framework, as detailed in the appendix, is extended to encompass service fee credits. This extension capitalises on the network's auxiliary services to disperse incentives and attract liquidity, ensuring the network achieves and maintains the critical usage threshold essential for its sustained operational viability and progressive growth

    Minimal nutrition intervention with high-protein/low-carbohydrate and low-fat, nutrient-dense food supplement improves body composition and exercise benefits in overweight adults: A randomized controlled trial

    Get PDF
    Background: Exercise and high-protein/reduced-carbohydrate and -fat diets have each been shown separately, or in combination with an energy-restricted diet to improve body composition and health in sedentary, overweight (BMI > 25) adults. The current study, instead, examined the physiological response to 10 weeks of combined aerobic and resistance exercise (EX) versus exercise + minimal nutrition intervention designed to alter the macronutrient profile, in the absence of energy restriction, using a commercially available high-protein/low-carbohydrate and low-fat, nutrient-dense food supplement (EXFS); versus control (CON). Methods: Thirty-eight previously sedentary, overweight subjects (female = 19; male = 19) were randomly assigned to either CON (n = 10), EX (n = 14) or EXFS (n = 14). EX and EXFS participated in supervised resistance and endurance training (2× and 3×/wk, respectively); EXFS consumed 1 shake/d (weeks 1 and 2) and 2 shakes/d (weeks 3–10). Results: EXFS significantly decreased total energy, carbohydrate and fat intake (-14.4%, -27.2% and -26.7%, respectively; p < 0.017), and increased protein and fiber intake (+52.1% and +21.2%, respectively; p < 0.017). EX and EXFS significantly decreased fat mass (-4.6% and -9.3%, respectively; p < 0.017), with a greater (p < 0.05) decrease in EXFS than EX and CON. Muscle mass increase only reached significance in EXFS (+2.3%; p < 0.017), which was greater (p < 0.05) than CON but not EX (+1.1%). Relative VO2max improved in both exercise groups (EX = +5.0% and EXFS = +7.9%; p < 0.017); however, only EXFS significantly improved absolute VO2max (+6.2%; p = 0.001). Time-to-exhaustion during treadmill testing increased in EX (+9.8%) but was significantly less (p < 0.05) than in EXFS (+21.2%). Total cholesterol and LDL decreased only in the EXFS (-12.0% and -13.3%, respectively; p < 0.017). Total cholesterol-to-HDL ratio, however, decreased significantly (p < 0.017) in both exercise groups. Conclusion: Absent energy restriction or other dietary controls, provision of a high-protein/low-carbohydrate and -fat, nutrient-dense food supplement significantly, 1) modified ad libitum macronutrient and energy intake (behavior effect), 2) improved physiological adaptations to exercise (metabolic advantage), and 3) reduced the variability of individual responses for fat mass, muscle mass and time-to-exhaustion – all three variables improving in 100% of EXFS subjects

    Total body water estimations in healthy men and women using bioimpedance spectroscopy: a deuterium oxide comparison

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Total body water (TBW) estimations have been used to estimate body composition, particularly fat-free mass, to aid in nutritional interventions, and to monitor hydration status. In the past, bioimpedance spectroscopy (BIS) devices have been used to estimate TBW. Previous investigations have examined the validity of the XiTRON 4000B (XiTRON Technologies) BIS device for estimating TBW. Recently, a new BIS device (Imp™ SFB7) has become available, claiming greater precision when estimating TBW. The Imp™ SFB7 (SFB7) is based on similar BIS principles, while offering increased portability and a greater range of frequencies when compared to older devices, such as the XiTRON 4000B (4000B). The purpose of this study was to examine the validity of the SFB7 for estimating total body water in healthy college-age men and women compared to the 4000B and deuterium oxide (D<sub>2</sub>O).</p> <p>Methods</p> <p>Twenty-eight Caucasian men and women (14 men, 14 women; 24 ± 4 yrs; 174.6 ± 8.7 cm; 72.80 ± 17.58 kg) had their TBW estimated by the SFB7, the 4000B, and D<sub>2</sub>O.</p> <p>Results</p> <p>Both BIS devices produced similar standard error of estimate (<it>SEE</it>) and <it>r </it>values (SFB7, <it>SEE </it>= 2.12L, <it>r </it>= 0.98; 4000B, <it>SEE </it>= 2.99L, <it>r </it>= 0.96) when compared to D<sub>2</sub>O, though a significant constant error (<it>CE</it>) was detected for the 4000B (2.26L, <it>p </it>≤ 0.025). The 4000B produced a larger total error (<it>TE</it>) and <it>CE </it>(<it>TE </it>= 3.81L, <it>CE </it>= 2.26L) when compared to the SFB7 (<it>TE </it>= 2.21L, <it>CE </it>= -0.09L). Additionally, the limits of agreement were larger for the 4000B (-3.88 to 8.39L) than the SFB7 (-4.50 to 4.31L). These results were consistent when sex was analyzed separately, though women produced lower <it>SEE </it>and <it>TE </it>values for both devices.</p> <p>Conclusion</p> <p>The 4000B and SFB7 are valid BIS devices when compared to D<sub>2</sub>O to estimate TBW in college-age Caucasian men and women. Furthermore, the new SFB7 device displayed greater precision in comparison to the 4000B, which may decrease the error when estimating TBW on an individual basis.</p

    Percent body fat estimations in college women using field and laboratory methods: a three-compartment model approach

    Get PDF
    This is the publisher's version, also available electronically from http://www.jissn.com/content/4/1/16.Background Methods used to estimate percent body fat can be classified as a laboratory or field technique. However, the validity of these methods compared to multiple-compartment models has not been fully established. This investigation sought to determine the validity of field and laboratory methods for estimating percent fat (%fat) in healthy college-age women compared to the Siri three-compartment model (3C). Methods Thirty Caucasian women (21.1 ± 1.5 yrs; 164.8 ± 4.7 cm; 61.2 ± 6.8 kg) had their %fat estimated by BIA using the BodyGram™ computer program (BIA-AK) and population-specific equation (BIA-Lohman), NIR (Futrex® 6100/XL), a quadratic (SF3JPW) and linear (SF3WB) skinfold equation, air-displacement plethysmography (BP), and hydrostatic weighing (HW). Results All methods produced acceptable total error (TE) values compared to the 3C model. Both laboratory methods produced similar TE values (HW, TE = 2.4%fat; BP, TE = 2.3%fat) when compared to the 3C model, though a significant constant error (CE) was detected for HW (1.5%fat, p ≤ 0.006). The field methods produced acceptable TE values ranging from 1.8 – 3.8 %fat. BIA-AK (TE = 1.8%fat) yielded the lowest TE among the field methods, while BIA-Lohman (TE = 2.1%fat) and NIR (TE = 2.7%fat) produced lower TE values than both skinfold equations (TE > 2.7%fat) compared to the 3C model. Additionally, the SF3JPW %fat estimation equation resulted in a significant CE (2.6%fat, p ≤ 0.007). Conclusion Data suggest that the BP and HW are valid laboratory methods when compared to the 3C model to estimate %fat in college-age Caucasian women. When the use of a laboratory method is not feasible, NIR, BIA-AK, BIA-Lohman, SF3JPW, and SF3WB are acceptable field methods to estimate %fat in this population

    Pre-workout consumption of Celsius® enhances the benefits of chronic exercise on body composition and cardiorespiratory fitness

    Get PDF
    The functional beverage Celsius®, has recently been shown, after acute and chronic (28 days) consumption, to increase resting metabolism and serum blood markers of lipolysis in healthy, college-aged men and women. The purpose of this study was to examine the combined effects of a 10-week exercise program while consuming Celsius® on body composition and cardiorespiratory fitness changes in sedentary men and women

    Percent body fat estimations in college women using field and laboratory methods: a three-compartment model approach

    Get PDF
    This is the publisher's version, also available electronically from http://www.jissn.com/content/4/1/16.Background Methods used to estimate percent body fat can be classified as a laboratory or field technique. However, the validity of these methods compared to multiple-compartment models has not been fully established. This investigation sought to determine the validity of field and laboratory methods for estimating percent fat (%fat) in healthy college-age women compared to the Siri three-compartment model (3C). Methods Thirty Caucasian women (21.1 ± 1.5 yrs; 164.8 ± 4.7 cm; 61.2 ± 6.8 kg) had their %fat estimated by BIA using the BodyGram™ computer program (BIA-AK) and population-specific equation (BIA-Lohman), NIR (Futrex® 6100/XL), a quadratic (SF3JPW) and linear (SF3WB) skinfold equation, air-displacement plethysmography (BP), and hydrostatic weighing (HW). Results All methods produced acceptable total error (TE) values compared to the 3C model. Both laboratory methods produced similar TE values (HW, TE = 2.4%fat; BP, TE = 2.3%fat) when compared to the 3C model, though a significant constant error (CE) was detected for HW (1.5%fat, p ≤ 0.006). The field methods produced acceptable TE values ranging from 1.8 – 3.8 %fat. BIA-AK (TE = 1.8%fat) yielded the lowest TE among the field methods, while BIA-Lohman (TE = 2.1%fat) and NIR (TE = 2.7%fat) produced lower TE values than both skinfold equations (TE > 2.7%fat) compared to the 3C model. Additionally, the SF3JPW %fat estimation equation resulted in a significant CE (2.6%fat, p ≤ 0.007). Conclusion Data suggest that the BP and HW are valid laboratory methods when compared to the 3C model to estimate %fat in college-age Caucasian women. When the use of a laboratory method is not feasible, NIR, BIA-AK, BIA-Lohman, SF3JPW, and SF3WB are acceptable field methods to estimate %fat in this population

    Percent body fat estimations in college men using field and laboratory methods: A three-compartment model approach

    Get PDF
    Background: Methods used to estimate percent body fat can be classified as a laboratory or field technique. However, the validity of these methods compared to multiple-compartment models has not been fully established. The purpose of this study was to determine the validity of field and laboratory methods for estimating percent fat (%fat) in healthy college-age men compared to the Siri three-compartment model (3C). Methods: Thirty-one Caucasian men (22.5 ± 2.7 yrs; 175.6 ± 6.3 cm; 76.4 ± 10.3 kg) had their %fat estimated by bioelectrical impedance analysis (BIA) using the BodyGram™ computer program (BIA-AK) and population-specific equation (BIA-Lohman), near-infrared interactance (NIR) (Futrex® 6100/XL), four circumference-based military equations [Marine Corps (MC), Navy and Air Force (NAF), Army (A), and Friedl], air-displacement plethysmography (BP), and hydrostatic weighing (HW). Results: All circumference-based military equations (MC = 4.7% fat, NAF = 5.2% fat, A = 4.7% fat, Friedl = 4.7% fat) along with NIR (NIR = 5.1% fat) produced an unacceptable total error (TE). Both laboratory methods produced acceptable TE values (HW = 2.5% fat; BP = 2.7% fat). The BIA-AK, and BIA-Lohman field methods produced acceptable TE values (2.1% fat). A significant difference was observed for the MC and NAF equations compared to both the 3C model and HW (p < 0.006). Conclusion: Results indicate that the BP and HW are valid laboratory methods when compared to the 3C model to estimate %fat in college-age Caucasian men. When the use of a laboratory method is not feasible, BIA-AK, and BIA-Lohman are acceptable field methods to estimate %fat in this population
    corecore