60 research outputs found

    Spotting lesions in thorax X-rays at a glance: holistic processing in radiology

    Get PDF
    Radiologists often need only a glance to grasp the essence of complex medical images. Here, we use paradigms and manipulations from perceptual learning and expertise fields to elicit mechanisms and limits of holistic processing in radiological expertise. In the first experiment, radiologists were significantly better at categorizing thorax X-rays when they were presented for 200 ms in an upright orientation than when they were presented upside-down. Medical students, in contrast, were guessing in both situations. When the presentation time was increased to 500 ms, allowing for a couple more glances, the radiologists improved their performance on the upright stimuli, but remained at the same level on the inverted presentation. The second experiment circumvented the holistic processing by immediately cueing a tissue within the X-rays, which may or may not contain a nodule. Radiologists were again better than medical students at recognizing whether the cued tissue was a nodule, but this time neither the inverted presentation nor additional time affected their performance. Our study demonstrates that holistic processing is most likely a continuous recurring process which is just as susceptible to the inversion effect as in other expertise domains. More importantly, our study also indicates that holistic-like processing readily occurs in complex stimuli (e.g., whole thorax X-rays) but is more difficult to find in uniform single parts of such stimuli (e.g., nodules)

    White Matter Changes-Related Gait and Executive Function Deficits: Associations with Age and Parkinson's Disease

    Get PDF
    Background: White matter changes (WMC) are a common finding among older adults and patients with Parkinson's disease (PD), and have been associated with, e.g., gait deficits and executive dysfunction. How the factors age and PD influence WMC-related deficits is, to our best knowledge, not investigated to date. We hypothesized that advanced age and presence of PD leads to WMC-related symptoms while practicing tasks with a low complexity level, and low age and absence of PD leads to WMC-related symptoms while practicing tasks with a high complexity level.Methods: Hundred and thirty-eight participants [65 young persons without PD (50–69 years, yPn), 22 young PD patients (50–69 years, yPD), 36 old persons without PD (70–89 years, oPn) and 15 old PD patients (70–89 years, oPD)] were included. Presence and severity of WMC were determined with the modified Fazekas score. Velocity of walking under single and dual tasking conditions and the Trail Making Test (TMT) were used as gait and executive function parameters. Correlations between presence and severity of WMC, and gait and executive function parameters were tested in yPn, yPD, oPn, and oPD using Spearman's rank correlation, and significance between groups was evaluated with Fisher's z-transformed correlation coefficient.Results: yPn and yPD, as well as oPn and oPD did not differ regarding demographic and clinical parameters. Severity of WMC was not significantly different between groups. yPn and yPD displayed significant correlations of WMC with executive function parameters at low levels of task complexity, oPn at intermediate, and oPD at high complexity levels.Conclusion: This study argues for a relevant association of age and PD-related brain pathology with WMC-related gait and executive function deficits

    Parsing rooms: the role of the PPA and RSC in perceiving object relations and spatial layout

    Get PDF
    The perception of a scene involves grasping the global space of the scene, usually called the spatial layout, as well as the objects in the scene and the relations between them. The main brain areas involved in scene perception, the parahippocampal place area (PPA) and retrosplenial cortex (RSC), are supposed to mostly support the processing of spatial layout. Here we manipulated the objects and their relations either by arranging objects within rooms in a common way or by scattering them randomly. The rooms were then varied for spatial layout by keeping or removing the walls of the room, a typical layout manipulation. We then combined a visual search paradigm, where participants actively search for an object within the room, with multivariate pattern analysis (MVPA). Both left and right PPA were sensitive to the layout properties, but the right PPA was also sensitive to the object relations even when the information about objects and their relations is used in the cross-categorization procedure on novel stimuli. The left and right RSC were sensitive to both spatial layout and object relations, but could only use the information about object relations for cross-categorization to novel stimuli. These effects were restricted to the PPA and RSC, as other control brain areas did not display the same pattern of results. Our results underline the importance of employing paradigms that require participants to explicitly retrieve domain-specific processes and indicate that objects and their relations are processed in the scene areas to a larger extent than previously assumed

    The Faces in Radiological Images: Fusiform Face Area Supports Radiological Expertise

    No full text
    The fusiform face area (FFA) has often been used as an example of a brain module that was developed through evolution to serve a specific purpose—face processing. Many believe, however, that FFA is responsible for holistic processing associated with any kind of expertise. The expertise view has been tested with various stimuli, with mixed results. One of the main stumbling blocks in the FFA controversy has been the fact that the stimuli used have been similar to faces. Here, we circumvent the problem by using radiological images, X-rays, which bear no resemblance to faces. We demonstrate that FFA can distinguish between X-rays and other stimuli by employing multivariate pattern analysis. The sensitivity to X-rays was significantly better in experienced radiologists than that in medical students with limited radiological experience. For the radiologists, it was also possible to use the patterns of FFA activations obtained on faces to differentiate X-ray stimuli from other stimuli. The overlap in the FFA activation is not based on visual similarity of faces and X-rays but rather on the processes necessary for expertise with both kinds of stimulus. Our results support the expertise view that FFA's main function is related to holistic processing
    • …
    corecore