2,827 research outputs found

    Quantum correlations of light due to a room temperature mechanical oscillator for force metrology

    Full text link
    The coupling of laser light to a mechanical oscillator via radiation pressure leads to the emergence of quantum mechanical correlations between the amplitude and phase quadrature of the laser beam. These correlations form a generic non-classical resource which can be employed for quantum-enhanced force metrology, and give rise to ponderomotive squeezing in the limit of strong correlations. To date, this resource has only been observed in a handful of cryogenic cavity optomechanical experiments. Here, we demonstrate the ability to efficiently resolve optomechanical quantum correlations imprinted on an optical laser field interacting with a room temperature nanomechanical oscillator. Direct measurement of the optical field in a detuned homodyne detector ("variational measurement") at frequencies far from the resonance frequency of the oscillator reveal quantum correlations at the few percent level. We demonstrate how the absolute visibility of these correlations can be used for a quantum-enhanced estimation of the quantum back-action force acting on the oscillator, and provides for an enhancement in the relative signal-to-noise ratio for the estimation of an off-resonant external force, even at room temperature

    Clamp-tapering increases the quality factor of stressed nanobeams

    Full text link
    Stressed nanomechanical resonators are known to have exceptionally high quality factors (QQ) due to the dilution of intrinsic dissipation by stress. Typically, the amount of dissipation dilution and thus the resonator QQ is limited by the high mode curvature region near the clamps. Here we study the effect of clamp geometry on the QQ of nanobeams made of high-stress Si3N4\mathrm{Si_3N_4}. We find that tapering the beam near the clamp - and locally increasing the stress - leads to increased QQ of MHz-frequency low order modes due to enhanced dissipation dilution. Contrary to recent studies of tethered-membrane resonators, we find that widening the clamps leads to decreased QQ despite increased stress in the beam bulk. The tapered-clamping approach has practical advantages compared to the recently developed "soft-clamping" technique. Tapered-clamping enhances the QQ of the fundamental mode and can be implemented without increasing the device size

    Ecological and life-history drivers of avian skull evolution

    Get PDF
    One of the most famous examples of adaptive radiation is that of the Galápagos finches, where skull morphology, particularly the beak, varies with feeding ecology. Yet increasingly studies are questioning the strength of this correlation between feeding ecology and morphology in relation to the entire neornithine radiation, suggesting that other factors also significantly affect skull evolution. Here, we broaden this debate to assess the influence of a range of ecological and life history factors, specifically habitat density, migration, and developmental mode, in shaping avian skull evolution. Using 3D geometric morphometric data to robustly quantify skull shape for 354 extant species spanning avian diversity, we fitted flexible phylogenetic regressions and estimated evolutionary rates for each of these factors across the full dataset. The results support a highly significant relationship between skull shape and both habitat density and migration, but not developmental mode. We further found heterogenous rates of evolution between different character states within habitat density, migration, and developmental mode, with rapid skull evolution in species which occupy dense habitats, are migratory, or are precocial. These patterns demonstrate that diverse factors impact the tempo and mode of avian phenotypic evolution, and that skull evolution in birds is not simply a reflection of feeding ecology

    An MMPI-2 hopelessness scale: Construction, initial validation and implication for suicide risk

    Get PDF
    This study documents the development of a new MMPI-2 scale, Hopelessness (Hp), designed to identify suicide risk in examinees who, for whatever reason, may be reluctant to endorse items reflecting explicit suicide content. The psychometric and empirical validity characteristics were examined in a sample of 153 Italian psychiatric inpatients, all of whom were administered the MMPI-2, the Beck Hopelessness Scale (BHS), and the Mini International Neuropsychiatric Interview (MINI) shortly following admission.Item analysis suggested that the removal of one of the twelve original Hp items enhanced homogeneity of the scale and Bayesian confirmatory factor analysis (BCFA) indicated the fit of a unidimensional model (PPPs = 0.50 [PPC = -36.42/37.07]) for the 11-item version, with adequate reliability (ordinal alpha = 0.86). A regression analysis, with the MINI scores as criterion, and Hp and BHS scores as independent variables, indicated that only Hp scores (beta = 0.25, t = 2.32, p < 0.05) were independently associated with the MINI suicide risk. These findings indicate that the MMPI-2 Hp scale may be considered a valid and potentially useful measure of pessimistic attitudes toward the future and of potential suicide risk

    Probing Spin-Polarized Currents in the Quantum Hall Regime

    Full text link
    An experiment to probe spin-polarized currents in the quantum Hall regime is suggested that takes advantage of the large Zeeman-splitting in the paramagnetic diluted magnetic semiconductor zinc manganese selenide (Zn1x_{1-x}Mnx_xSe). In the proposed experiment spin-polarized electrons are injected by ZnMnSe-contacts into a gallium arsenide (GaAs) two-dimensional electron gas (2DEG) arranged in a Hall bar geometry. We calculated the resulting Hall resistance for this experimental setup within the framework of the Landauer-B\"uttiker formalism. These calculations predict for 100% spininjection through the ZnMnSe-contacts a Hall resistance twice as high as in the case of no spin-polarized injection of charge carriers into a 2DEG for filling factor ν=2\nu=2. We also investigated the influence of the equilibration of the spin-polarized electrons within the 2DEG on the Hall resistance. In addition, in our model we expect no coupling between the contact and the 2DEG for odd filling factors of the 2DEG for 100% spininjection, because of the opposite sign of the g-factors of ZnMnSe and GaAs.Comment: 7 pages, 5 figure

    Generalized dissipation dilution in strained mechanical resonators

    Full text link
    Mechanical resonators with high quality factors are of relevance in precision experiments, ranging from gravitational wave detection and force sensing to quantum optomechanics. Beams and membranes are well known to exhibit flexural modes with enhanced quality factors when subjected to tensile stress. The mechanism for this enhancement has been a subject of debate, but is typically attributed to elastic energy being "diluted" by a lossless potential. Here we clarify the origin of the lossless potential to be the combination of tension and geometric nonlinearity of strain. We present a general theory of dissipation dilution that is applicable to arbitrary resonator geometries and discuss why this effect is particularly strong for flexural modes of nanomechanical structures with high aspect ratios. Applying the theory to a non-uniform doubly clamped beam, we show analytically how dissipation dilution can be enhanced by modifying the beam shape to implement "soft clamping", thin clamping and geometric strain engineering, and derive the ultimate limit for dissipation dilution

    Deep Learning with Coherent VCSEL Neural Networks

    Full text link
    Deep neural networks (DNNs) are reshaping the field of information processing. With their exponential growth challenging existing electronic hardware, optical neural networks (ONNs) are emerging to process DNN tasks in the optical domain with high clock rates, parallelism and low-loss data transmission. However, to explore the potential of ONNs, it is necessary to investigate the full-system performance incorporating the major DNN elements, including matrix algebra and nonlinear activation. Existing challenges to ONNs are high energy consumption due to low electro-optic (EO) conversion efficiency, low compute density due to large device footprint and channel crosstalk, and long latency due to the lack of inline nonlinearity. Here we experimentally demonstrate an ONN system that simultaneously overcomes all these challenges. We exploit neuron encoding with volume-manufactured micron-scale vertical-cavity surface-emitting laser (VCSEL) transmitter arrays that exhibit high EO conversion (<5 attojoule/symbol with VπV_\pi=4 mV), high operation bandwidth (up to 25 GS/s), and compact footprint (<0.01 mm2^2 per device). Photoelectric multiplication allows low-energy matrix operations at the shot-noise quantum limit. Homodyne detection-based nonlinearity enables nonlinear activation with instantaneous response. The full-system energy efficiency and compute density reach 7 femtojoules per operation (fJ/OP) and 25 TeraOP/(mm2^2\cdot s), both representing a >100-fold improvement over state-of-the-art digital computers, with substantially several more orders of magnitude for future improvement. Beyond neural network inference, its feature of rapid weight updating is crucial for training deep learning models. Our technique opens an avenue to large-scale optoelectronic processors to accelerate machine learning tasks from data centers to decentralized edge devices.Comment: 10 pages, 5 figure

    Genomics of Postprandial Lipidomics in the Genetics of Lipid-Lowering Drugs and Diet Network Study

    Get PDF
    Postprandial lipemia (PPL) is an important risk factor for cardiovascular disease. Inter-individual variation in the dietary response to a meal is known to be influenced by genetic factors, yet genes that dictate variation in postprandial lipids are not completely characterized. Genetic studies of the plasma lipidome can help to better understand postprandial metabolism by isolating lipid molecular species which are more closely related to the genome. We measured the plasma lipidome at fasting and 6 h after a standardized high-fat meal in 668 participants from the Genetics of Lipid-Lowering Drugs and Diet Network study (GOLDN) using ultra-performance liquid chromatography coupled to (quadrupole) time-of-flight mass spectrometry. A total of 413 unique lipids were identified. Heritable and responsive lipid species were examined for association with single-nucleotide polymorphisms (SNPs) genotyped on the Affymetrix 6.0 array. The most statistically significant SNP findings were replicated in the Amish Heredity and Phenotype Intervention (HAPI) Heart Study. We further followed up findings from GOLDN with a regional analysis of cytosine-phosphate-guanine (CpGs) sites measured on the Illumina HumanMethylation450 array. A total of 132 lipids were both responsive to the meal challenge and heritable in the GOLDN study. After correction for multiple testing of 132 lipids (α = 5 × 10−8/132 = 4 × 10−10), no SNP was statistically significantly associated with any lipid response. Four SNPs in the region of a known lipid locus (fatty acid desaturase 1 and 2/FADS1 and FADS2) on chromosome 11 had p \u3c 8.0 × 10−7 for arachidonic acid FA(20:4). Those SNPs replicated in HAPI Heart with p \u3c 3.3 × 10−3. CpGs around the FADS1/2 region were associated with arachidonic acid and the relationship of one SNP was partially mediated by a CpG (p = 0.005). Both SNPs and CpGs from the fatty acid desaturase region on chromosome 11 contribute jointly and independently to the diet response to a high-fat meal
    corecore