6 research outputs found

    1 MHz Akinetic Dispersive Ring Cavity Swept Source at 850 nm

    Get PDF
    A fast dual mode-locked akinetic optical swept source at 850 nm central wavelength is presented using a dispersive cavity. We demonstrate that single mode fiber can be successfully used as dispersive element to induce mode locking. A first locking condition is imposed by driving the optical gain at a high frequency, to induce mode locking, while a second locking condition involves sweeping at a rate close to resonance value. In this regime, using the same fiber length in the loop, sweeping rates of 0.5 MHz and 1 MHz are demonstrated with proportional reduction in the tuning bandwidth. The axial range of the swept source was evaluated by scanning through the channeled spectrum of a Michelson interferometer

    >

    No full text

    >

    No full text

    Dispersion in optical configurations and sources for Optical Coherence Tomography

    No full text
    Optical coherence tomography is a biomedical imaging technique employed to visualize tissue structure, ocular vasculature and blood flow. An OCT system is a non-invasive biomedical imaging system that provides bi-dimensional and three-dimensional images of biological tissue with micrometer scale resolution and millimeter scale depth range. In clinical application, OCT is employed in vivo imaging of the human eye. Swept source optical coherence tomography (SS-OCT) is the latest and fastest method of scanning. However, there are several disadvantages of the SS-OCT such as: the decrease of the roll-off sensitivity as the depth of scanning increases and the presence of mirror terms in the OCT images. The main objective of the work presented throughout this thesis was to evaluate the effects of dispersion on the performance of OCT. This study extends the research from the optical configurations at the core of OCT systems to the optical sources, where we show that dispersion can be usefully employed to obtain sweeping. We prove that an akinetic swept source (AKSS) can be devised for the important band of OCT, 800 nm, where there is still no MHz swept source available. In a Michelson interferometer a Fourier domain optical delay line was used for dispersion compensation that subsequently was employed to control the dispersion in an OCT system. A first goal of this thesis was to increase dispersion in order to evaluate the possibility of removing mirror terms from the OCT images. Therefore, three methods of dispersion measurement were evaluated. The first method measures the full width half maximum of the autocorrelation function. The second method uses a super continuous laser and an acoustic-optic tunable filter to measure the path dispersion in the position of the autocorrelation peak. A third method consists in a fitting method applied to channeled spectra collected from the interferometer when using a mirror. A second goal of this thesis was to prove the usefulness of employing dispersion in building a SS. In the process of akinetic swept source optimization, several types of dispersive fibres were tested and the most optimum conditions for driving a semiconductor optical amplifier were established. A dual mode locking scheme was used to tune the akinetic swept source at MHz rates. The axial range of the swept source was evaluated by scanning through the channeled spectrum of a Michelson interferometer

    Spectral delay line for display control in swept source OCT

    No full text
    A modality of controlling the unbalanced dispersion in an optical coherence tomography (OCT) set-up is presented, together with image processing techniques that improve the quality of the interferogram image by reducing its noise and dispersion. The ultimate goal of the study is to obtain dispersion free and enhanced signal to noise ratio OCT images of the human retina. The OCT set-up incorporates a spectral delay line, which is used to compensate for the dispersion in the system. The configuration is driven by a swept optical source. The interferometric signal is digitized by a fast acquisition board, then processed and rendered as images on a computer display. Preliminary results are presented showing images of a multilayer structure obtained using different filtering techniques that were tested for their effects on the noise reduction and image sharpness. © 2015 SPIE
    corecore