1 research outputs found

    Bareā€Bones particle Swarm optimizationā€based quantization for fast and energy efficient convolutional neural networks

    No full text
    Neural network quantization is a critical method for reducing memory usage and computational complexity in deep learning models, making them more suitable for deployment on resource-constrained devices. In this article, we propose a method called BBPSO-Quantizer, which utilizes an enhanced Bare-Bones Particle Swarm Optimization algorithm, to address the challenging problem of mixed precision quantization of convolutional neural networks (CNNs). Our proposed algorithm leverages a new population initialization, a robust screening process, and a local search strategy to improve the search performance and guide the population towards a feasible region. Additionally, Deb's constraint handling method is incorporated to ensure that the optimized solutions satisfy the functional constraints. The effectiveness of our BBPSO-Quantizer is evaluated on various state-of-the-art CNN architectures, including VGG, DenseNet, ResNet, and MobileNetV2, using CIFAR-10, CIFAR-100, and Tiny ImageNet datasets. Comparative results demonstrate that our method delivers an excellent tradeoff between accuracy and computational efficiency
    corecore