72 research outputs found

    Global P wave tomography of Earth's lowermost mantle from partition modeling

    Get PDF
    Determining the scale-length, magnitude, and distribution of heterogeneity in the lowermost mantle is crucial to understanding whole mantle dynamics, and yet it remains a much debated and ongoing challenge in geophysics. Common shortcomings of current se

    Intraplate volcanism controlled by back-arc and continental structures in NE Asia inferred from transdimensional Bayesian ambient noise tomography

    Get PDF
    Intraplate volcanism adjacent to active continental margins is not simply explained by plate tectonics or plume interaction. Recent volcanoes in northeast (NE) Asia, including NE China and the Korean Peninsula, are characterized by heterogeneous tectonic structures and geochemical compositions. Here we apply a transdimensional Bayesian tomography to estimate high-resolution images of group and phase velocity variations (with periods between 8 and 70 s). The method provides robust estimations of velocity maps, and the reliability of results is tested through carefully designed synthetic recovery experiments. Our maps reveal two sublithospheric low-velocity anomalies that connect back-arc regions (in Japan and Ryukyu Trench) with current margins of continental lithosphere where the volcanoes are distributed. Combined with evidences from previous geochemical and geophysical studies, we argue that the volcanoes are related to the low-velocity structures associated with back-arc processes and preexisting continental lithosphere

    A new Probe into the Innermost Inner Core Anisotropy via the Global Coda-correlation Wavefield

    Get PDF
    Investigations of the Earth's inner core (IC) using seismic body waves are limited by their volumetric sampling due to uneven global distribution of large earthquakes and receivers. The sparse coverage of the IC leads to uncertainties in its anisotropy, the directional dependence of seismic velocity. Yet, detailed constraints on anisotropy, such as its magnitude, and spatial distribution, are required to understand the crystallographic structure of IC's iron and its solidification and deformation processes. Here, we present a new method to investigate the IC's anisotropic properties based on Earth's coda-correlation wavefield constructed from the late coda of large earthquakes. We perform a comprehensive travel time analysis of I2*, an IC-sensitive correlation feature identified as a counterpart of the direct seismic wavefield's PKIKPPKIKP waves, yet fundamentally different. Namely, I2* is a mathematical manifestation of similarity among specific seismic phases with the same slowness detected in global correlograms in the short inter-receiver distance range. Our new spatial sampling of the IC overcomes the shortage of direct seismic wavefield paths sensitive to the IC's central volume, also known as the innermost IC (IMIC). The observed I2*’s travel time variations relative to Earth's rotation axis (ERA) support a model of cylindrical anisotropy with 3.3% strength and a zonal pattern of slow axis oriented 55° from ERA. We thus find compelling evidence for a deep IC structure with distinct anisotropy, although we cannot resolve the depth at which the change occurs. This finding reinforces previous inference on the IMIC, with implications for Earth's evolution

    Exploiting seismic signal and noise in an intracratonic environment to constrain crustal structure and source parameters of infrequent earthquakes

    Get PDF
    In many regions of the world characterized by a relatively low rate of seismicity, the determination of local and regional seismic source parameters is often restricted to an analysis of the first onsets of P waves (or first motion analysis) due to incomplete information about Earth structure and the small size of the events. When rare large earthquakes occur in these regions, their waveforms can be used to model Earth structure. This, however, makes the nature of the earthquake source determination problem circular, as source information is mapped as structure. Presented here is one possible remedy to this situation, where through a two-step approach we first constrain Earth structure using data independent of the earthquake of interest. In this study, we focus on a region in Western Australia with low seismicity and minimal instrument coverage and use the CAPRA/LP temporary deployment to demonstrate that reliable structural models of the upper lithosphere can be obtained from an independent collection of teleseismic and ambient noise datasets. Apart from teleseismic receiver functions (RFs), we obtain group velocities from the cross-correlation of ambient noise and phase velocities from the traditional two-station method using carefully selected teleseismic earthquakes and station pairs. Crustal models are then developed through the joint inversion of dispersion data and RFs, and structural Green's functions are computed from a layered composite model. In the second step of this comprehensive approach, we apply full waveform inversion (three-component body and surface waves) to the 2007 M L= 5.3 Shark Bay, Western Australia, earthquake to estimate its source parameters (seismic moment, focal mechanism, and depth). We conclude that the full waveform inversion analysis provides constraints on the orientation of fault planes superior to a first motion interpretation

    The puzzle of the 1996 Bardarbunga, Iceland, Earthquake: No volumetric component in the source mechanism

    Get PDF
    A volcanic earthquake with Mw 5:6 occurred beneath the Bárdarbunga caldera in Iceland on 29 September 1996. This earthquake is one of a decade-long sequence of M 5 events at Bárdarbunga with non-double-couple mechanisms in the Global Centroid Moment Te

    High-frequency ambient noise tomography of southeast Australia: New constraints on Tasmania's tectonic past

    Get PDF
    The island of Tasmania, at the southeast tip of Australia, is an ideal natural laboratory for ambient noise tomography, as the surrounding oceans provide an energetic and relatively even distribution of noise sources. We extract Rayleigh wave dispersion curves from the continuous records of 104 stations with ∼15 km separation. Unlike most passive experiments of this type, which observe very little coherent noise below a 5 s period, we clearly detect energy at periods as short as 1 s, thanks largely to the close proximity of oceanic microseisms on all sides. The main structural elements of the eastern and northern Tasmanian crust are revealed by inverting the dispersion curves (between 1 and 12 s period) for both group and phase velocity maps. Of particular significance is a pronounced band of low velocity, observed across all periods, that underlies the Tamar River Valley and continues south until dissipating in southeast Tasmania. Together with evidence from combined active source and teleseismic tomography and heat flow data, we interpret this region as a diffuse zone of strong deformation associated with the mid-Paleozoic accretion of oceanic crust along the eastern margin of Proterozoic Tasmania, which has important implications for the evolution of the Tasman Orogen of eastern Australia. In the northwest, a narrower low-velocity anomaly is seen in the vicinity of the Arthur Lineament, which may be attributed to local sediments and strong deformation and folding associated with the final phases of the Tyennan Orogeny

    Multistep modelling of teleseismic receiver functions combined with constraints from seismic tomography: Crustal structure beneath southeast China

    Get PDF
    With a growing number of modern broad-band seismographic stations in Asia, the conditions have improved to allow higher resolution structural studies on regional scales. Here, we perform a receiver-based study of the lithosphere of southeast China using waveform records of excellent quality from 14 Chinese National Digital Seismic Network and four Global Seismic Network stations. Calculating the theoretical receiver functions (RFs) that match the observed RFs from teleseismic waveforms is an established technique for retrieving information about crustal and upper mantle structure beneath a seismic receiver. RFs, however, are predominantly sensitive to the gradients in the lithospheric elastic parameters, and it is impossible to determine a non-unique distribution of seismic parameters such as absolute shear wave speeds as a function of depth unless other geophysical data are combined with RFs. Thus, we combine RFs with independent information from shear and compressional wave speeds above and below the Mohorovičić discontinuity, available from the existing tomographic studies. We introduce a statistical approach for automatically selecting only mutually coherent RFs from a large set of observed waveforms. Furthermore, an interactive forward modelling software is introduced and applied to observed RFs to define a prior, physically acceptable range of elastic parameters in the lithosphere. This is followed by a grid-search for a simple crustal structure. An initial model for a linearized, iterative inversion is constructed from multiple constraints, including results from the grid-search for shear wave speed, the Moho depth versus vp/vs ratio domain search and tomography. The thickness of the crust constrained by our multistep approach appears to be more variable in comparison with tomographic studies, with the crust thinning significantly towards the east. We observe low values of vp/vs ratios across the entire region, which indicates the presence of a very silicic crust. We do not observe any correlation between the crustal thickness or age of the crust with vp/vs ratios, which argues against a notion that there is a simple relationship between mineralogical composition and crustal thickness and age on a global scale

    Transdimensional inversion of receiver functions and surface wave dispersion

    Get PDF
    We present a novel method for joint inversion of receiver functions and surface wave dispersion data, using a transdimensional Bayesian formulation. This class of algorithm treats the number of model parameters (e.g. number of layers) as an unknown in the problem. The dimension of the model space is variable and a Markov chain Monte Carlo (McMC) scheme is used to provide a parsimonious solution that fully quantifies the degree of knowledge one has about seismic structure (i.e constraints on the model, resolution, and trade-offs). The level of data noise (i.e. the covariance matrix of data errors) effectively controls the information recoverable from the data and here it naturally determines the complexity of the model (i.e. the number of model parameters). However, it is often difficult to quantify the data noise appropriately, particularly in the case of seismic waveform inversion where data errors are correlated. Here we address the issue of noise estimation using an extended Hierarchical Bayesian formulation, which allows both the variance and covariance of data noise to be treated as unknowns in the inversion. In this way it is possible to let the data infer the appropriate level of data fit. In the context of joint inversions, assessment of uncertainty for different data types becomes crucial in the evaluation of the misfit function. We show that the Hierarchical Bayes procedure is a powerful tool in this situation, because it is able to evaluate the level of information brought by different data types in the misfit, thus removing the arbitrary choice of weighting factors. After illustrating the method with synthetic tests, a real data application is shown where teleseismic receiver functions and ambient noise surface wave dispersion measurements from the WOMBAT array (South-East Australia) are jointly inverted to provide a probabilistic 1D model of shear-wave velocity beneath a given station

    Candy wrapper for the Earth's inner core

    Get PDF
    Recent global expansion of seismic data motivated a number of seismological studies of the Earth's inner core that proposed the existence of increasingly complex structure and anisotropy. In the meantime, new hypotheses of dynamic mechanisms have been put forward to interpret seismological results. Here, the nature of hemispherical dichotomy and anisotropy is re-investigated by bridging the observations of PKP(bc-df) differential travel-times with the iron bcc/hcp elastic properties computed from first-principles methods. The Candy Wrapper velocity model introduced here accounts for a dynamic picture of the inner core (i.e., the eastward drift of material), where different iron crystal shapes can be stabilized at the two hemispheres. We show that seismological data are best explained by a rather complicated, mosaic-like, structure of the inner core, where well-separated patches of different iron crystals compose the anisotropic western hemispherical region, and a conglomerate of almost indistinguishable iron phases builds-up the weakly anisotropic eastern side

    Seismic moment tensors from synthetic rotational and translational ground motion: Green's functions in 1-D versus 3-D

    Get PDF
    Seismic moment tensors are an important tool and input variable for many studies in the geosciences. The theory behind the determination of moment tensors is well established. They are routinely and (semi-) automatically calculated on a global scale. However, on regional and local scales, there are still several difficulties hampering the reliable retrieval of the full seismic moment tensor. In an earlier study, we showed that the waveform inversion for seismic moment tensors can benefit significantly when incorporating rotational ground motion in addition to the commonly used translational ground motion. In this study, we test, what is the best processing strategy with respect to the resolvability of the seismic moment tensor components: inverting three-component data with Green’s functions (GFs) based on a 3-D structural model, six-component data with GFs based on a 1-D model, or unleashing the full force of six-component data and GFs based on a 3-D model? As a reference case, we use the inversion based on three-component data and 1-D structure, which has been the most common practice in waveform inversion for moment tensors so far. Building on the same Bayesian approach as in our previous study, we invert synthetic waveforms for two test cases from the Korean Peninsula: one is the 2013 nuclear test of the Democratic People’s Republic of Korea and the other is an Mw  5.4 tectonic event of 2016 in the Republic of Korea using waveform data recorded on stations in Korea, China and Japan. For the Korean Peninsula, a very detailed 3-D velocity model is available. We show that for the tectonic event both, the 3-D structural model and the rotational ground motion, contribute strongly to the improved resolution of the seismic moment tensor. The higher the frequencies used for inversion, the higher is the influence of rotational ground motions. This is an important effect to consider when inverting waveforms from smaller magnitude events. The explosive source benefits more from the 3-D structural model than from the rotational ground motion. Nevertheless, the rotational ground motion can help to better constraint the isotropic part of the source in the higher frequency range.SD thanks Bayrische Forschungsallianz (BayFOR) for funding her internship at the Australian National University (ANU, grant: BayIntAn-LMU-2017-66). Further funding comes from the European Research Council (advanced grant to HI: ROMY, number: 339991)
    corecore