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[1] Determining the scale-length, magnitude, and distribution of heterogeneity in the
lowermost mantle is crucial to understanding whole mantle dynamics, and yet it remains
a much debated and ongoing challenge in geophysics. Common shortcomings of current
seismically derived lowermost mantle models are incomplete raypath coverage, arbitrary
model parameterization, inaccurate uncertainty estimates, and an ad hoc definition of the
misfit function in the optimization framework. In response, we present a new approach to
global tomography. Apart from improving the existing raypath coverage using only
high-quality cross-correlated waveforms, the problem is addressed within a Bayesian
framework where explicit regularization of model parameters is not required. We obtain
high-resolution images, complete with uncertainty estimates, of the lowermost mantle P
wave velocity structure using a hand-picked data set of PKPab-df, PKPbc-df, and PcP-P
differential travel times. Most importantly, our results demonstrate that the root mean
square of the P wave velocity variations in the lowermost mantle is approximately 0.87%,
which is 3 times larger than previous global-scale estimates.
Citation: Young, M. K., H. Tkalc̆ić, T. Bodin, and M. Sambridge (2013), Global P wave tomography of Earth’s lowermost mantle
from partition modeling, J. Geophys. Res. Solid Earth, 118, 5467–5486, doi:10.1002/jgrb.50391.

1. Introduction
[2] The lowermost mantle is one of the most intrigu-

ing and important layers of the Earth. Extreme contrasts in
velocity, density, and viscosity are seen at the core man-
tle boundary, where the solid mantle meets the liquid core.
Additionally, the lowermost mantle is heterogeneous in
terms of viscosity, seismic velocity, density, chemistry, and
temperature. The pattern of velocity heterogeneity has been
studied at a variety of scale lengths; for example, global
models clearly reveal long wavelength velocity patterns
[e.g., Wysession, 1996; Antolik et al., 2003; Lei and Zhao,
2006; Li et al., 2008; Ritsema et al., 2011]. In those stud-
ies, regions of higher wave speeds are typically attributed to
cool subducted slabs while regions of slower wave speeds
are regarded as the signature of hot, upwelling material. A
pattern of large areas of low velocity under the southwest
Pacific and southern Africa is well established in the deep
Earth community [e.g., Su et al., 1994; Li and Romanowicz,
1996; Wysession, 1996; Grand et al., 1997; Mégnin and
Romanowicz, 2000; Gu et al., 2001; Antolik et al., 2003;
Lei and Zhao, 2006; Houser et al., 2008; Li et al., 2008;
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Della Mora et al., 2011; Soldati et al., 2012]. The African
anomaly extends about 1000 km above the core mantle
boundary [e.g., Ritsema et al., 2011] and is likely both ther-
mal and chemical in nature [e.g., Ni and Helmberger, 2001a;
Simmons et al., 2007]. There is increasing evidence that the
Pacific anomaly is also at least partially chemical in origin
[e.g., Tkalc̆ić and Romanowicz, 2002; Trampert et al., 2004;
Ishii and Tromp, 2004; He and Wen, 2009]. Meanwhile,
local studies of core phases and their precursors indicate the
presence of short-scale heterogeneity [e.g., Doornbos, 1974;
Bataille and Flatte, 1988; Vidale and Hedlin, 1998; Bréger
and Romanowicz, 1998; Cormier, 1999; Bréger et al., 2000;
Rost and Earle, 2010; Earle et al., 2011]. A goal of this
study is to investigate the strength of the velocity perturba-
tions, as there is evidence that this amplitude is far greater
than the level implied by current global tomographic models
[e.g., Ritsema et al., 1998; Garcia et al., 2009].

[3] There is increasing research to support a fine-scale and
complex nature of heterogeneity at the base of the mantle.
Developing a global model of lowermost mantle structure
may prove vital to a more precise understanding of magnetic
field generation, deep mantle flow, and other geodynami-
cal processes. Common impediments to a reliable model
include limited sampling due to the natural global seismicity
pattern and seismic station availability, questionable quality
of large data sets, influence by crustal and mid-upper man-
tle structure, artificially coarse model parameterizations, and
inadequate quantification of data noise. Nonetheless, con-
siderable advances in seismic tomography have been made
since early global mantle studies [Dziewonski et al., 1977;
Nakanishi and Anderson, 1982; Dziewonski, 1984], which
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almost exclusively depended on absolute, P wave travel
times and a simple block or spherical harmonic parameter-
ization. Differential travel times are less sensitive to source
mislocation and heterogeneities near the source and receiver.
Cormier and Choy [1986] demonstrated this advantage and
used differential PKP wave measurements to assess veloc-
ity heterogeneity in and near the inner core. Woodward
and Masters [1991] then applied the differential travel time
method to the mantle and used PP-P and SS-S measure-
ments to map global upper mantle structure. It then became
common to combine different data sets to improve spatial
coverage and depth resolution. Su et al. [1994] used a syn-
thesis of full waveform data, absolute S arrivals, and SS-S
and ScS-S differential travel times to invert for a 3-D map of
mantle shear velocity structure.

1.1. Advances in Data Quality
[4] Over the last couple of decades, many global mod-

els of P wave velocity in the mantle have been produced
[e.g., Inoue et al., 1990; Vasco et al., 1995; van der Hilst
et al., 1997; Vasco and Johnson, 1998; Antolik et al., 2003;
Fukao et al., 2003; Montelli et al., 2004; Lei and Zhao, 2006;
Houser et al., 2008; Li et al., 2008; Zhao, 2009; Della Mora
et al., 2011; Zhao et al., 2012]. Nonetheless, P wave man-
tle models are still less common than S wave mantle models
as a result of the relative difficulty in measuring P wave
arrivals. The challenge of accruing a collection of P wave
arrivals is due to several factors. First, the source mechanism
radiation pattern of strike slip earthquakes does not produce
much P wave energy down to the core mantle boundary.
Also, the conversion from P waves to S waves is often more
efficient than the conversion of S waves to P waves. Addi-
tionally, S waves can be viewed on both the transverse and
radial component of the seismogram, whereas P waves are
best observed on just the vertical component (at epicentral
distances beyond 145ı and often close to antipodal dis-
tances, the vertical and radial components of a seismogram
are almost the same due to the steep incident angle of PKP
waves). Finally, S wave models are typically derived from
lower frequency data, which are more conducive to wave-
form modeling and inversion. P waves, especially PcP, on
the other hand must be observed at higher frequencies, often
leaving them buried in noise and susceptible to dispersion in
the lowermost mantle.

[5] By inverting for the entire mantle structure instead
of the lowermost mantle alone, mid-upper mantle hetero-
geneity is less likely to be erroneously mapped onto the
bottommost layer. These whole mantle models are also
useful for assessing heterogeneity at the base of the man-
tle in the sense that they reveal any vertical continuity of
structure, such is especially pertinent when investigating the
presence of plumes [Zhao, 2004]. The chief drawback of
entire mantle models, however, is the quality of the data; it is
far too time consuming to manually pick a data set for whole
mantle imaging. Therefore, researchers generally use Inter-
national Seismological Center (ISC) or Engdahl et al. [1998]
(as in Li et al. [2008]) data sets, which are of questionable
quality for many phases [Inoue et al., 1990; Vasco et al.,
1995; van der Hilst et al., 1997; Vasco and Johnson, 1998;
Boschi and Dziewonski, 2000; Fukao et al., 2003; Zhao,
2004; Montelli et al., 2004; Lei and Zhao, 2006; Zhao, 2009;
Della Mora et al., 2011; Zhao et al., 2012]. Despite the

potentially enormous data sets, model resolution in the low-
ermost mantle is often limited due to the computational costs
associated with the whole mantle model parameterization.

[6] The heterogeneity pattern above the core mantle
boundary is frequently better retrieved when inverting for
the lowermost mantle region alone. By reducing unwanted
crustal and mid-upper mantle effects, differential travel
times of body waves are especially helpful when decipher-
ing the complexities of the mantle’s bottommost layer. For
example, Sylvander and Souriau [1996] used PKPab-bc dif-
ferential travel times to retrieve P velocity structure in the
lowermost mantle. A limitation of this approach, however,
is incomplete raypath sampling due to the unfavorable con-
figuration of earthquakes and land-based seismic stations.
This situation can in part be ameliorated by using multiple
seismic phases with different sampling patterns. For exam-
ple, Kárason and van der Hilst [2001] used P, pP, and
pwP, coupled with PKPab-df, PKPab-bc, and PKPdf-Pdiff
differential travel times, and Tkalc̆ić et al. [2002] used cross-
correlated PKPab-df and PcP-P data to invert for lowermost
mantle structure. In this study, we augment the data sets
of Tkalc̆ić et al. [2002] and Tkalc̆ić [2010] by adding new
PKPab-df, PKPbc-df, and PcP-P differential travel times
with the intent of patching the spatial gaps in sampling.

1.2. Advances in Inverse Methods
[7] In addition to the steady improvement in data quality

and quantity, in large part thanks to accumulated recordings
of the Global Seismographic Network that the Incorpo-
rated Research Institutions for Seismology (IRIS) initiated
in 1984, there has also been improvement in inversion meth-
ods. This progress is to a great degree a reflection of an
increase in computing power. Irregular-sized block param-
eterization was first introduced by Inoue et al. [1990],
which helped reduce over parameterization while at the
same time allowing the resolution of small-scale struc-
tures where justified by the data. Tkalc̆ić et al. [2002] also
employed a variable size block inversion method and intro-
duced an algorithm to restrict the aspect ratios of the blocks.
Antolik et al. [2003] used a horizontal tessellation of spheri-
cal splines that provided the equivalent resolution as spheri-
cal harmonic degree 18 for a joint inversion of P wave and S
wave velocity in the mantle. Sambridge and Faletic̆ [2003]
presented a self-adaptive inversion technique in which the
initial parameterization, based on spherical triangles and
Delaunay tetrahedra, is refined throughout the inversion.
Recently, Simons et al. [2011] and Chevrot et al. [2012] pro-
posed a spherical wavelet approach to global tomographic
inversions whose multiresolution potential is ideal for spa-
tially ill-distributed data sets. Zhao et al. [2012] adopted a
flexible-grid parameterization for whole mantle tomography
that was designed to better express mantle structure under
the polar regions.

[8] In addition to increasingly sophisticated model param-
eterizations, inversion algorithms have also been improved.
Beghein et al. [2002] used the neighborhood algorithm of
Sambridge [1999] to invert for spherical harmonic degree
2 P and S wave velocity structure in the mantle. Garcia
et al. [2009] approached lowermost mantle heterogeneity
from a different perspective and used stochastic analysis to
relate differential travel time measurements to the correla-
tion function of velocity heterogeneity. Using PKP travel
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times, they inverted for the statistical properties of velocity
perturbations in the lowermost mantle and provided valu-
able constraints on the scale length and magnitude of P
wave heterogeneity that are unbiased by smoothing, damp-
ing, or model parameterization. More modern tomography
methods began to step away from classical ray theory when
Montelli et al. [2004] implemented a finite frequency
approach to travel time tomography and demonstrated that
wavefront healing cannot be ignored when using long-period
P and PP waves. Finite frequency effects were demonstrated
to be especially important for PKP phases in the lowermost
mantle [Calvet and Chevrot, 2005], although only recently
were the first exact and complete finite frequency kernels
for short period PKP waves computed [Fuji et al., 2012].
Garcia et al. [2004, 2006] introduced another method known
as Simulated Annealing Waveform Inversion of Body waves
(SAWIB), which resolved the interference between direct
PKP waves and their corresponding depth phases, thereby
allowing the use of recordings from triplication distances
and shallow earthquakes.

[9] If we are to accurately depict the scale-length of het-
erogeneity at the core mantle boundary, we must insure that
the results are minimally influenced by arbitrary choices
about model parameterization, smoothing, and damping.
Such intervention is often the downfall of traditional lin-
earized inversion methods, where models are artificially
parameterized and either resolution is lost due to unneces-
sary smoothing or noise is misinterpreted as data complexity.
In response to these pitfalls, we implement a fully non-
linear Bayesian partition-modeling technique for our tomo-
graphic inversion. This is an ensemble inference approach
in which model space is sampled via Reversible Jump
Markov Chain Monte Carlo sampling [Green, 1995, 2003].
Model parameters, including the level of data noise, are
treated as unknowns in the problem and are represented
by probability distribution functions rather than single val-
ues. Therefore, the complexity and amplitude of the veloc-
ity variations in our final model, which results from a
complete ensemble of hundreds of thousands of sampled
models, depend almost exclusively on the data itself, and
there is no need to apply explicit smoothing or damp-
ing procedures [Bodin et al., 2012a]. This method pro-
vides the statistical robustness of Beghein et al. [2002] and
Garcia et al. [2009] and the multiscale resolution capabili-
ties of Simons et al. [2011] and Chevrot et al. [2012] while
introducing a novel approach to handling data noise and
model parametrization.

[10] Conventional approaches to global tomography have
two major drawbacks, both of which we seek to address
in this study. The first is ad hoc data noise estimation and
the subjective choice of smoothing and damping param-
eters. This can lead to the loss of valuable information,
especially about model discontinuities, in an effort to avoid
the overinterpretation of noise. We instead invert for the
data uncertainty, and the level of complexity and strength
of perturbations in the final model are appropriately lim-
ited by the noise content of the data [e.g., Bodin et al.,
2012a]. The second disadvantage is arbitrary model param-
eterization, often governed by equal-sized block cells [e.g.,
Sylvander and Souriau, 1996; Tkalc̆ić et al., 2002; Houser
et al., 2008] or limited-degree spherical harmonic expan-
sions [e.g., Tanaka, 2010; Ritsema et al., 2011]. Such rigid

Figure 1. Raypaths of PKPab, PKPbc, PKPdf, PcP, and P
body waves for the epicentral distance of 155ı and 65ı.

parameterizations prevent full utilization of data content
while either oversimplifying and oversmoothing the model
or adding unjustified complexity and artificial discontinu-
ities. In this study, we partition the lowermost mantle into
a mosaic of Voronoi polygons whose size, location, veloc-
ity, and number vary throughout the inversion according
to the information content of the data. This probabilistic,
partition modeling based approach enables us to present
a global-scale model of P wave velocity variations in the
lowermost mantle together with uncertainty estimates. Our
choice of inversion method also allows valuable estimates of
the scale length and strength of velocity heterogeneity in the
lowermost mantle.

2. Data
[11] As a starting point, we use 1408 PKPab-df, 1068

PKPbc-df, and 399 PcP-P differential travel times taken
from the hand-picked data sets of Tkalc̆ić et al. [2002] and
Tkalc̆ić [2010]. Hand-picking allows the alignment of the
onsets of the phases rather than the peaks or troughs of
greatest amplitude, as is the tendency of automatic cross
correlation. We have automated cross-correlation estimates
for a large portion of the data set, and in most cases, the
difference is less than 0.5 s. We do not use measurements
from diffracted raypaths or epicentral distances less than
55ı (in the case of PcP-P) to improve accuracy in forward
modeling. The benefit of using differential travel times
versus absolute travel times is that biases due to source
mislocation and near-surface structure are greatly reduced
due to the nearness of the two raypaths in the crust and
upper mantle (Figure 1). To further reduce mantle effects,
we experiment with correcting for mantle structure using
current mantle models, as is further discussed in the next
section. After assessing the gaps in the lowermost mantle
sampling, we in part fill them by hand-picking an additional
463 PKPab-df, 224 PKPbc-df, and 281 PcP-P differential
travel times. We use data recorded between the years 1965
and 2010 inclusive, mostly coming from large (Mb >6)
events with depths greater than 35 km. See Figure 2 for
a demonstration of the improvement in raypath coverage.
This 34% increase in travel time measurements greatly
improves coverage in many areas, most notably Africa, the
southwest Indian Ocean, the north Atlantic, and the north
Australia/Indonesia.
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Figure 2. (a) PKPbc raypaths through the lowermost 300 km of the mantle associated with the PKPbc-
df data set. (b) PKPab raypaths associated with the PKPab-df data set. (c) PcP raypaths associated with
the PcP-P data set. (d) Raypaths associated with all three data sets. The raypaths from the data sets of
Tkalc̆ić et al. [2002] and Tkalc̆ić [2010] are shown in light blue, and those of this study are shown in
dark blue.

2.1. PKPab-df Data Set
[12] The differential PKPab-df travel time measurements

are in part taken from the hand-picked data set of Tkalc̆ić
et al. [2002]. We have expanded this collection to improve
spatial coverage (Figures 2b and 3b), although our measure-
ment techniques remain much the same. First, we relocate
earthquakes according to Engdahl et al. [1998], as a 10 km
error in either source or receiver location will result in
a differential travel time measurement error of between
approximately 0.2 and 0.4 s. Then after a Hilbert transform
is applied to the unfiltered PKPab waveform, the onsets
of the seismic phase are aligned manually rather than by
an automated cross-correlation technique (Figure 4a). Once
precisely aligned, the travel time residual is calculated rel-
ative to the global reference model ak135 [Kennett et al.,
1995] and corrections are made to account for the Earth’s
ellipticity [Kennett and Gudmundsson, 1996]. Finally, cor-
rected residuals range from –4 to +6 s (Figure 5b), although
most of this range results from a small cluster of very anoma-
lous paths of � (angle between PKPdf leg and rotation axis of
the Earth) between 20 and 30ı originating in the South Sand-
wich Islands (SSI). The majority of residuals range between
˙2 s when the SSI data is excluded (see section 3.6 for
further details).

[13] Most of the data set (1871 individually measured
differential travel times) comes from large (Mb >5.8) earth-
quakes of depths greater than 30 km recorded on the
vertical component of primarily digital broadband instru-
ments between 145 and 175ı from the source. Although
we use unfiltered data for measurement, PKP waves are
in general best accentuated when filtered between 0.5 and
3.0 Hz. Data from large, deep earthquakes generally yield

seismograms of good signal to noise ratios. Nonetheless,
we only reserve measurements for the final inversion if
the uncertainty associated with the temporal location of the
phase onset is less than 0.5 s upon visual inspection. The
PKPdf phase samples the inner core while the PKPab bot-
toms less deep and only samples the outer core (Figure 1).
The two phases are very similar in the crust and upper man-
tle (less than �7 km separation at 30 km depth), which
helps to remove most of the unwanted effects of heterogene-
ity near the source or receiver. The differences in raypath
geometry of the two phases is, however, very sensitive to
heterogeneity in the lowermost mantle, as the path separa-
tion ranges from 12 to 47ı, or 720 to 2820 km, at the core
mantle boundary. Given a dominant frequency of 1.0 Hz
and an epicentral distance of 150ı, the Fresnel zone of a
typical PKPab wave will be around 300 km wide in the
lowermost mantle.

2.2. PKPbc-df Data Set
[14] PKPbc-df differential travel times are ideal for prob-

ing short-scale heterogeneity, as the separation of the two
phases is less than 400 km at the core mantle boundary
(Figure 1). Given a dominant frequency of 1.0 Hz and an
epicentral distance of 150ı, the width of the Fresnel zone of
a typical PKPbc wave will be around 300 km in the lower-
most mantle. The close proximity of the raypaths also means
that mantle corrections are less critical than for the other data
sets. We again focus on large, deep earthquakes, but this time
from a epicentral distance range of 145 to 155ı. Because
of this more limited distance range, the PKPbc-df data set
is smaller than the PKPab-df data set (1292 versus 1871).
Less measurements and shorter raypaths in the lowermost
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Figure 3. (a) PKPbc-df and (b) PKPab-df differential travel time residuals plotted at the surface pro-
jection of the bottoming point of the PKPdf raypath. (c) PcP-P differential travel time residuals plotted
at the surface projection of the bottoming point of the PcP raypath. (d) Differential travel time residu-
als of all three data sets. Positive residuals are shown by red circles; negative residuals are shown by
blue circles.

mantle makes the PKPbc-df sampling poor in comparison to
the PKPab-df data set (Figures 2 and 3).

[15] Measurements are performed in much the same man-
ner as with PKPab-df but without the application of the
Hilbert transform. Relative phase offset times are carefully
measured relative to ak135 after event relocation and ellip-
ticity corrections are applied. The resulting residuals range
from –1.5 to +5 s; however, like in the PKPab-df case,
this larger range results from a small cluster of anoma-
lous paths from the SSI; the majority of the residuals range
between˙1 s (Figure 5a). When plotted with respect to � , it
becomes clear that the spread in the PKPbc-df measurements
is significantly less than that of the PKPab-df measurements.

2.3. PcP-P Data Set
[16] The inclusion of PcP-P differential travel times not

only enhances spatial coverage (Figures 2 and 3) but also
helps to resolve ambiguity about the location of hetero-
geneity on source or receiver sides. Moreover, PcP and P
wave are not core phases; hence, they are useful for isolat-
ing inner core structure from the lowermost mantle when
in combination with other data sets. Our data set of 680
differential travel times is derived from an epicentral dis-
tance range of 55 to 70ı. This conservative limit helps to
insure close raypath proximity within the mantle and crust,
reducing unwanted effects of heterogeneity outside the low-
ermost mantle. At 300 km depth, raypath separation does
not exceed 0.93ı, or 98 km, for an earthquake with a surface
depth of focus. Again, the same measurement procedures as
described earlier are applied. Although we prefer to process
the data without filtering, raw PcP arrivals are often buried

in microseismic noise. To extract a measurable signal, some
data required filtering between 1.0 and 3.0 Hz (Figure 4).
At a dominant frequency of 1.0 Hz and an epicentral dis-
tance of 55ı, the Fresnel zone of a typical PcP wave will be
around 300 km in the lowermost mantle. The residuals range
between ˙3 s, exhibit no obvious correlation with epicen-
tral distance, and have no anomalous clusters like in the PKP
data sets.

3. Inversion Method
[17] In this paper, we present a new approach to global

tomography. We use a Bayesian inversion technique [e.g.,
Box and Tiao, 1973; Tarantola and Valette, 1982; Bernando
and Smith, 1994] to invert for lowermost mantle P wave
velocity structure, as it is ideal for reliably represent-
ing model complexity and perturbation amplitude. This
approach has been applied to a variety of seismological
problems, including tomography [Zollo et al., 2002; Bodin
and Sambridge, 2009; Khan et al., 2011; Bodin et al., 2012a;
Mosca et al., 2012], receiver function inversion [Piana
Agostinetti and Malinverno, 2010; Bodin et al., 2012b], and
seismic source parameter estimation [Myers et al., 2007;
Monelli and Mai, 2008]. For a more complete description
of Bayesian analysis, refer to Bodin and Sambridge [2009],
Bodin et al. [2012b, 2012a], and Sambridge et al. [2013].

3.1. Transdimensional Bayes
[18] The method relies on Bayes’ theorem [Bayes, 1763],

which provides the solution to the general inverse prob-
lem d = g(m), where d is the data vector and g maps
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Figure 4. (a) Plot of the final alignment of PKPdf and
PKPab phases used to measure the differential travel time
PKPab-df. A Hilbert transform and polarity reversal have
been applied to the PKPab phase. (b) Plot of the final align-
ment of PKPdf and PKPbc phases used to measure the
differential travel time PKPbc-df. (c) Plot of the final align-
ment of P and PcP phases used to measure the differential
travel time PcP-P.

the model parameter vector m into data, and can be stated
mathematically as

p(m | dobs) / p(dobs | m)p(m), (1)

where p(m | dobs) is the posterior probability distribution
function of the unknown model parameters m solving the
inverse problem given the data dobs. Solutions are described

by a joint probability distribution function over all model
parameters rather than a single optimal solution. Models that
fit the data better will have a higher posterior probability,
although models that offer a worse fit to the data will still be
included in the posterior distribution. The term p(dobs | m)
is the likelihood function, which yields the probability of
observing data dobs given model m. This provides a mea-
sure of how well a particular model fits the data and depends
on the misfit between the observed data and the synthetic
travel times computed for a given model and also on the esti-
mated variance of the data noise. For the case of Gaussian
noise statistics, the likelihood function p(dobs | m) can be
expressed as

p(d | m) =
1

p
(2�)N | Ce |

� exp

–
1
2

{[g(m) – d]TC–1
e [g(m) – d]}.

(2)

[19] In our case, d is the vector of N observed differential
travel times, g(m) is the vector of N predicted differen-
tial travel times given the current lowermost mantle model
m. The method is transdimensional in the sense that model
m can have a variable number of defining parameters.
In all inverse problems, the number of model parameters,
and hence model complexity, is dependent on the level of
data noise. Since the number of the model parameters can
change, the required number of cells to fit the data can be
expressed as a posterior probability distribution function.
The term Ce is the data noise covariance matrix, and |Ce |
is its determinant. If the estimated error is low, the required
number of model parameters to fit the data will be rela-
tively large, whereas high uncertainty will yield a simpler
model of fewer parameters. By allowing a flexible number of
unknowns, or a model of variable dimension, we appropri-
ately leave model complexity to be determined by the data
[Bodin et al., 2012a]. Although it may seem that an overly
complicated model would result in order to minimize data
variance, the parsimonious nature of the Bayesian approach
promotes the preservation of the simplest models that fit
the data, thus preventing unjustified model complexity
[Malinverno, 2002].

[20] Going back to equation (1), our prior information
about model m is represented by the a priori probability dis-
tribution p(m). This is a mathematical representation of what
we think we know about the model prior to performing the
inversion. In order to minimally affect the inversion out-
come, we employ a uniform distribution between –5% and
+5% perturbation from the global reference model ak135
[Kennett et al., 1995] as part of our prior information. So
p(vi) = 1/(vmax – vmin) for values of vi between vmin and
vmax, and p(v) = 0 for all velocity values outside that range.
Because the shape of any distribution multiplied by a uni-
form distribution will be unaffected, the prior information
acts only as a lower and upper bound to the allowed veloc-
ity perturbations. Similarly, we impose prior assumptions
about the number of Voronoi cells n needed to represent
the data. We allow between 4 and 5000 cells, so p(n) =
1/(nmax – nmin) for all values of n between nmin and nmax, and
p(n) = 0 otherwise.

3.2. Hierarchical Bayes
[21] The level of data noise is an important unknown in

modeling. In our case, “noise” is everything that contributes
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Figure 5. (left) The PKPbc-df, (middle) PKPab-df, and (right) PcP-P differential travel time data sets
used in this study. Travel time residuals are plotted with respect to �(ı) (left, middle) or epicentral distance
� (ı)(right).

to the difference between the observed and predicted differ-
ential travel time residuals [Scales and Snieder, 1998]; this
includes either theory errors, which affect the predicted dif-
ferential travel times, or measurement errors, which affect
the observed differential travel times. An example of a
theory error is the mapping of core-sensitive PKP phase
differential travel times exclusively to the lowermost man-
tle. In a joint inversion that also includes PcP-P differential
travel times, which do not sample the core, the inner core
effects on core-sensitive phases will not be coherent and will
hence be accounted for as “data noise” [Bodin et al., 2012a].
Another source for theory error is assuming a uniform thick-
ness of 300 km for the lowermost mantle. Additionally,
raypath geometries were not iteratively updated and ray
theory instead of finite frequency theory was utilized due
to the prohibitive computational cost involved. For a typi-
cal PcP-P (epicentral distance of 55ı), a 1% homogeneous
increase in P wave velocity in the lowermost 300 km of
the mantle would create a �0.12 s error if the raypath is
not perturbed accordingly. This error may play a part in
the differences between the PcP and PKP data sets (see
section 4.2). For a PKPab-df raypath geometry with an epi-
central distance range of 150ı, the error is less, at around
0.02 s. For a PKPbc-df raypath geometry of the same epi-
central distance, the error is even smaller, at around 0.001 s.
The finite frequency effects are in part diminished by the
fact that the application of various band-pass filters sug-
gests the dominant period of the data sets is approximately
1 s. Additionally, we use differential travel times rather than
absolute times. Finally, the reference model is derived from
data in which the finite frequency approximation was used.
A more significant source of error would likely stem from
the use of catalog data, such as the ISC data sets employed
by many previous workers, due to triplication effects, for-
going the Hilbert transform of the PKPab phase, and not
accounting for the source time function (in the case of abso-
lute arrival times). An example of a source of measurement
error is event mislocation, even though we use the event cat-
alog presented by Engdahl et al. [1998], which uses ISC
relocation algorithms. These approximations contribute to
the misfit and are also accounted for as data noise. It is not
possible, however, to estimate the ratio of theory errors to
measurement errors. Similarly, it is not possible to estimate
the relative contribution of each error source, whether it be
theory- or measurement-based. Noise essentially represents
the difference between the true residuals and the residuals
able to be explained by our model.

[22] We represent the data noise with the matrix Ce, which
for N data is a symmetric N�N matrix. We assume invariant,
uncorrelated Gaussian random noise that is dependent only
on the data type (i.e., whether it is a PKPab-df, PKPbc-df, or
PcP-P differential travel time measurement). Therefore, the
noise correlation matrix Ce in equation (2) is diagonal and
can be expressed as follows [Gouveia and Scales, 1998]:

Ce =

ˇ̌
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

�2
i 0 : : : 0

0 �2
i : : : 0

...
...

. . .
...

0 0 : : : �2
i

ˇ̌
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

, (3)

where �i = �1 for PKPbc-df data, �i = �2 for PKPab-df
data, and �i = �3 for PcP-P data. Each data type is repre-
sented by a single hyperparameter � that is representative
of the standard deviation of the data errors (measured in
seconds). We invert for three different parameters to charac-
terize the data uncertainty of the PKPab-df, PKPbc-df, and
PcP-P data sets, as these data sets would not be expected to
have the same level of noise; the raypaths, signal-to-noise
ratios of the seismograms, and sensitivity to lowermost man-
tle structure and core mantle boundary topography are quite
different. Although we predetermine the form of the matrix
Ce, the actual entry values are left as unknowns in the prob-
lem [Malinverno and Briggs, 2004; Malinverno and Parker,
2006]. We do, however, impose the prior assumption that
the data noise values will range between 0.01 s and 2.0 s for
each data set. The maximum of the posterior probability dis-
tribution functions of the � values is used as the estimated
noise level for each data set. The relative uncertainty of the
data sets determines their relative contribution to the inver-
sion process [Bodin et al., 2012a, 2012b], thereby removing
any need for ad hoc weighting factors.

3.3. Model Parameterization
[23] The lowermost mantle is modeled as an ensemble

of Voronoi cells of variable size and shape (Figure 6). The
positions of these nonoverlapping polygons are defined by
their Voronoi nuclei. Each point within a cell is closer to
that cell’s nucleus than to any other nucleus. Therefore, the
cell walls are perpendicular bisectors of adjacent nuclei. For
each cell, we have three unknowns: its position (defined by
its latitude and longitude) and its velocity. The total num-
ber of these Voronoi cells is an unknown as well. A given
model iteration is also parameterized by the � values within
the data noise correlation matrix Ce.
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Figure 6. Example of a Voronoi P wave velocity model
realization in the lowermost 300 km of the mantle, which
consists of an irregular, interlocking set of polygons. Each
Voronoi cell encompasses all the points within the 2-D
space that are closer to its center than to any other Voronoi
cell center.

[24] Previous global tomographic studies invert for
velocity structure using models based on blocks [e.g.,
Tkalc̆ić et al., 2002; Vasco et al., 2006; Houser et al., 2008;
Soldati et al., 2012] or spherical harmonic expansions [e.g.,
Su et al., 1994; Antolik et al., 2003; Ritsema et al., 2011].
The problem with block parameterization is that arbitrary
and fictitious velocity boundaries arise between the blocks.
Ad hoc error estimation and its consequent requirement
for arbitrary smoothing and damping regularization are also
issues, as the model is often overly complex in regions of
poor sampling or high data noise. On the other hand, a spher-
ical harmonic representation limits the resolution of fine-
scale structure as might be expected of subducting slabs and
mantle plumes. With a Bayesian approach, however, model
parameterization is flexible and almost fully data-dependent.
Large, small, smooth, and discontinuous structures can be
imaged with appropriate levels of resolution.

[25] Since the Voronoi cells can occupy an infinite range
of configurations, we can take the average of a large num-
ber of postconvergence realizations to generate a continuous
final model. We do this by taking the spatial mean of the dis-
tribution of velocity values at each point (we sample at every
1ı in latitude and longitude) across the 2-D region of inter-
est. The grid of points for which we calculate an average
velocity can be as fine as desired to enable visual evalua-
tion of the model. This average model is both more complex
and smoother than any one individual model. It is not, how-
ever, the most probable model or best fit model. Smoothing
or damping procedures are unnecessary; for proper model
resolution, complexity, and smoothness are innate to the
averaged solution. We apply a similar procedure to approx-
imate a map of the model error by calculating the standard
deviation of the velocity distribution at each pixel. Areas
of greater uncertainty, such as poorly sampled regions or
the border between a sharp change in velocity, will undergo
more changes in parameterization and will therefore have a
higher velocity standard deviation.

[26] We model the core mantle boundary layer as being
the last 300 km of the mantle in part based on the signifi-
cant increase in the root-mean-square (RMS) of the velocity
perturbations observed in this region [e.g., Mégnin and
Romanowicz, 2000; Antolik et al., 2003; Simmons et al.,
2009; Zhao, 2009]. We also performed a series of tomo-
graphic inversions with a layer thickness of 250, 300, and
350 km. The 300 km thickness scenario yielded the low-
est noise estimates for the three data sets, indicating a better
fit to the data. This thickness is in agreement with the sta-
tistical analysis of Garcia et al. [2009] who estimated the
average thickness of the lowermost layer to be 350˙50 km.
If we model the layer as being too thin, valuable information
from P raypaths with bottoming depths above the 300 km
level may be lost. On the other hand, an erroneously thick
lowermost layer can potentially result in underestimated
heterogeneity. An extended Bayesian scheme where layer
thickness is variable would quantify the trade-off between
layer thickness and the amplitude of perturbations, and is the
subject of future research. Nonetheless, for this study, the
perceived noise in the data sets for the most part includes
effects of this approximation.

[27] As discussed in section 3.1, velocity perturbations
(relative to an average ak135 velocity of 13.61 km/s in
the lowermost 300 km of the mantle) are allowed to range
between ˙5%. This conservative limit is necessary to
properly assess the noise in the data. When the prior is
too unrestrictive, the true variations in the data are mis-
interpreted as noise and a nearly laterally homogeneous
model results.

[28] Because the Voronoi cell generation is based on a
rectangular grid, the global model is flattened from 3-D to
2-D. To insure that the model agrees with itself along the
edges when wrapped around to form a sphere once again, the
data set is duplicated and shifted by 360ı. The model space
is made to range from –360 to +360ı and when cropped back
to –180 to +180ı and wrapped around, the “seam” matches
perfectly. Nonetheless, the models will remain somewhat
“smeared” at the poles since the space is defined on a flat
projection. Work to greatly improve this aspect of the model
parameterization by implementing a spherical Voronoi cell
grid is in progress.

3.4. Misfit Evaluation
[29] The Markov chain algorithm requires calculation of

the likelihood for every model iteration. The likelihood func-
tion p(dobs | m) describes quantitatively to what level the
current model m can reproduce the observed data, and as
in equation (2) is related to the least squares misfit of the
predicted (g(m)) and observed (dobs) data as follows:

p(dobs | m) / exp
–�(m)

2
, (4)

where
�(m) = k

g(m) – dobsi

� i
k2. (5)

[30] In our case, dobsi refers to the observed differential
travel time residuals (�ıt), which are equal to the differ-
ence between the observed differential travel time (ıtobs)
between the first and second phase and the predicted differ-
ential travel time between the two phases according to ak135
(ıtak135) [Kennett et al., 1995]. Here dobsi = dobs1 and � i = � 1
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for PKPbc-df data, dobsi = dobs2 and � i = � 2 for PKPab-df
data, and dobsi = dobs3 and � i = � 3 for PcP-P data. A typical
value for kg(m)–dobsk prior to inversion is�0.5 s and postin-
version is �0.2 s, so the difference between the observed
and predicted differential travel times generally decreases by
more than half. If ıtm is the predicted differential travel time
between the first and second phase given model m,

�(m) = {k(ıtm – ıtak135) – (�ıtobs)k/� d}2. (6)

[31] Using the simple relationship d = vt and the fact that
we use fixed raypaths according to ak135,

�(m) = {k
ıd(m)

vak135[1 + p(m)]
–
ıd(m)
vak135

– (�ıtobs)k/� d}2, (7)

where p(m) is equal to the velocity perturbation relative to
the average velocity of the reference model ak135 in the
lowermost 300 km of the mantle (13.61 km/s). The vector
ıd(m) is the difference in raypath distance between the first
and second phase across each Voronoi cell of model m. We
integrate �(m) over all Voronoi cells. Each path length dif-
ference is calculated by sampling the raypaths at increments
on the order of 10 km and determining to which cell the mid-
point of the ray segment belongs. Segment lengths belonging
to the same cell are then added together prior to integrating
along the raypath. As explained in more detail in section 3.2,
�d is dependent on the phase type and is therefore repre-
sented by one of three unknowns, �1 for PKPbc-df, �2 for
PKPab-df, and �3 for PcP-P.

3.5. Sampling of the Model Space
[32] The Bayesian class of inversion is based on ensem-

ble inference, meaning that a large number of models are
generated, each with varying parameters, according to the
generalized version of Markov chain Monte Carlo sam-
pling called Reversible Jump MCMC [Green, 1995, 2003],
which is based on the Metropolis-Hasting algorithm of
Metropolis et al. [1953] and Hastings [1970]. Prior to
producing the first model, which is randomly created by
selecting values from the prior distributions, raypaths are
determined according to ak135 [Kennett et al., 1995] using
TauP [Crotwell et al., 1999]. At each step in the inversion, a
proposed model is created from a random perturbation of the
current model [Mosegaard and Tarantola, 1995]. The per-
turbation can result from one of five possible changes. First,
a new set of � values can be selected to represent the data
noise; this change is applied at every iteration. At every odd
iteration, the second type of change is performed, which is
that the velocity value of one randomly selected Voronoi cell
is changed. This new velocity value v0 is chosen such that

v0 = v + u�, (8)

where v is the original velocity of the cell, u is a random
number selected from a normal distribution between –1 and
1, and � is the standard deviation of the proposal. The �
value is determined by the user and will affect the rate of
convergence, but not the end result of the inversion. At every
even iteration, one of the three remaining types of change
is chosen at random to occur: (1) the position of one ran-
domly selected Voronoi cell is perturbed according to a 2-D
Gaussian proposal probability density centered at the cur-
rent position, (2) a new Voronoi cell is added at a randomly

selected location with a velocity chosen from a Gaussian
proposal probability centered on the current velocity value
where the “birth” takes place (same form as equation (8)),
or (3) a randomly selected Voronoi cell is deleted.

[33] After the model is updated, the differential travel
times are recomputed and compared with the observed dif-
ferential travel times. The new model is then either accepted
or rejected according to certain acceptance criteria [Bodin
and Sambridge, 2009]. The probability of accepting a pro-
posed model m0 given the current model m is ˛(m0 |
m), which Green [1995, 2003] equates to the following
in order to ensure convergence of the models toward the
posterior distribution:

˛(m0 | m) = min{1,
p(m0)
p(m)

�
p(dobs | m0)
p(dobs | m)

�
q(m | m0)
q(m0 | m)

� | J |}, (9)

where p(m0) and p(m) are the prior for the proposed and
current model, p(d | m0) and p(d | m) are the likelihood
functions (equation (2)) for the proposed and current model,
and q(m | m0) and q(m0 | m) are the forward and reverse pro-
posal functions. The term | J | is the Jacobian, which enables
a transformation between models of different dimension or
parameterization. In the case of changes that do not affect
model dimension (velocity change or cell move), q(m0 | m)
is equal to q(m | m0), meaning that it is equally probable that
we generate a proposed model m0 if we start with model m
as it is that we generate model m if we start with model m0.
In the case of a birth or death of a cell, however, the model
dimension changes and the proposal functions encourage
changes to the model. So in the event of a cell birth, the
proposed cell’s velocity is encouraged to deviate from the
velocity of the cell that was in that position in the original
model. Likewise, a cell death is favored if the velocity of the
deleted cell varies considerably from the velocity of the cell
that will replace its position upon removal. These trends are
of course subdued once combined with the likelihood and
prior ratios of equation (9). One end result is that uneven
raypath sampling is reflected in the relative size of Voronoi
cells of an individual model. Larger cells will persist or form
(via cell death) in regions of sparser sampling while much
smaller cells can be justified and created (via cell birth) in
regions of densest sampling [Bodin and Sambridge, 2009].

[34] To determine if the proposed model m0 is accepted or
rejected, we generate a uniformly distributed random num-
ber u between zero and one. If u(m0) is greater than ˛(m0),
then the model m0 is rejected and model m is retained for
the next step in the chain. Otherwise, model m0 is accepted
and forms the new basis to which the next perturbation will
occur. According to equation (9), if model m0 fits the data
better than model m, it will always be accepted. Models that
fit the data almost as well as the previous model will be
accepted most of the time, and models that fit very poorly
in comparison to the previous model will be accepted only
very rarely. In this manner, the chain’s path will be guided
toward parameter space of high target density; the sampling
distribution will mimic the target posterior distribution.

[35] The first portion of unstable, “burn-in” iterations
(usually around 2 million for the inversions considered here)
is discarded, while the remaining, postconvergence portion
is deemed representative of the posterior distribution [Green,
1995, 2003]. We define postconvergence as the point at
which average data misfit, average number of cells, and all
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Figure 7. (top) Model of P wave velocity variations in the lowermost mantle using the PKPab-df
differential travel time data set. Mantle corrections are applied according to Della Mora et al. [2011]. Per-
turbations are shown relative to the ak135 average velocity of the layer (13.61 km/s). (bottom left) Map
of the standard deviation of the velocity perturbation. (bottom right) Posterior probability distributions of
the PKPab-df data noise and number of cells.

velocity parameters cease to fluctuate beyond that of a nor-
mal white noise process and the solution map stabilizes.
Once we acquire a large ensemble of independent mod-
els, we can extract useful properties, such as the average,
median, or best model [Smith, 1991]. To insure model inde-
pendence, we “thin” this second part of the chain by only
retaining every 50th or 100th model for the final ensem-
ble from which we calculate a pointwise spatial average
model, so usually around 800,000 postconvergence models
are generated.

3.6. Measurement Corrections
[36] Creager [1999] suggested that the inner core is

strongly cylindrically anisotropic throughout most of the
western hemisphere with the fast direction aligned with or
near the spin axis. Although a simple model of cylindri-
cal inner core anisotropy with the fast axis aligned with the
Earth’s rotation axis has been disputed [e.g., Tkalc̆ić, 2010],
here we test whether such a scenario may be affecting our
lowermost mantle model inversion results by inverting the
PKPab-df, PKPbc-df, and PcP-P differential travel times for
two cases: (1) all raypaths (Figure 9) and (2) all raypaths
excepting those recorded from events in the South Sand-
wich Islands (SSI), which are strongly polar (Figure 8). The
total number of PKPab-df data points decreases from 1871
to 1786, and the number of PKPbc-df data points decreases
from 1291 to 1042. The exclusion of these very polar paths
(angle � < 30ı ) does not significantly affect the pattern of the
velocity variations of P wave velocity model of the lower-
most mantle; however, the RMS of the velocity perturbations
does change significantly. By removing SSI data, the RMS
reduces from 1.00% to 0.87%. In addition, when excluding
the SSI data, the noise estimates for each data set decrease
by approximately 5%, indicating a higher quality data set is
achieved by removing these anomalous paths. When remov-
ing the relatively few polar paths not associated with the
SSI, similar effects on data noise estimates and the strength
of perturbations are not seen. Therefore, our preferred aver-
age model (Figure 8) includes polar paths except for those
coming from the SSI, which may be influenced by strong

mantle heterogeneity related to slabs or fragments [Tkalc̆ić,
2010]. Consequently, we also exclude SSI data from all
inversions using the PKPbc-df and PKPab-df data sets
(Figures 7, 8, 10, and 11).

[37] Despite our preventative measures of removing SSI
data, there will still be some mapping of core structure to the
lowermost mantle. We further mitigate this effect by includ-
ing PcP-P measurements, which do not sample the core.
These differential travel times help to remove the ambiguity
between lowermost mantle and inner core contributions to
core phase arrival times. We also use a hierarchical Bayesian
model, which allows everything that cannot be explained
by our model to be treated as data noise. If there are inner
core effects, they will imply incoherency between different
data types and will therefore be treated as “theory errors.”
The overall agreement between areas of adequate coverage
by all three data sets helps to confirm that core struc-
ture can only have a minor effect on the differential travel
times (Figures 10 and 12).

[38] Mantle effects are corrected for using the 3-D man-
tle model of Della Mora et al. [2011], which results from
the inversion of direct P wave arrival times using a reg-
ularized least squares framework. This model is based
on �620,000 measurements from the ISC bulletin and
is undoubtedly biased by inconsistent measurement qual-
ity, exclusive use of direct arrivals, smoothing and damp-
ing, and block parametrization. Nonetheless, it provides a
reasonable approximation of upper mantle P wave veloc-
ity perturbations, which is where the power of hetero-
geneity is greatest and therefore most important for us
to consider. Della Mora et al. [2011] importantly cor-
rect for crustal structure and relocate sources according to
Antolik et al. [2003].

4. Results
4.1. Resolution Tests

[39] Each data set uniquely contributes to the retrieval of a
lowermost mantle P wave velocity model due to the different
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Figure 8. As for Figure 7 but for the PKPbc-df, PKPab-df, and PcP-P data sets combined. The South
Sandwich Islands earthquakes are excluded from the data set prior to inversion.

sampling patterns of the raypaths. This is illustrated through
two sets of resolution tests (Figures 13 and 14). For each test
in the first set, synthetic data is calculated according to the
raypath geometry of the actual data set for a known veloc-
ity model consisting of 20ı squares alternating between –2%
and +2% velocity variation perturbations (relative to ak135).
Gaussian random noise with a standard deviation of 0.5 s is
added to the synthetic data. The synthetic travel times are
inverted using the same Bayesian technique as is used for the
real data, and the retrieved model is compared to the actual
model to assess the resolution potential given the data and
method. Figure 13f shows the actual model used to produce
the synthetic travel times. The retrieved model of the first
test (Figure 13a) is a visual representation of the resolution
potential of the PKPab-df data set alone. As expected, the
best model recovery is obtained in regions of best sampling,
in particular Africa, the Atlantic, and east Asia/Indonesia.
The resolution test is performed for the PKPbc-df and PcP-P
data sets as well (Figures 13b and 13c). From these results,
it is clear that the PKPbc-df data alone cannot provide reli-
able information about the velocity structure for most of the
globe; for this reason, we only use PKPbc-df measurements
when in combination with other data sets.

[40] Finally, we join all three data sets. Now the
PcP-P raypaths geometries help attribute the PKPab-df
and PKPbc-df residuals to either the source or receiver
side of the raypaths and much improvement is seen in the
recovered model (Figure 13d). These tests show that in gen-
eral, structure on the order of 20ı in diameter is easily
resolved given the method and data sampling. Areas where
some smearing and damping of actual perturbation ampli-
tude should be expected, however, include the mid-Pacific,
the north Atlantic, the south Indian ocean, and the poles. The
poorly resolved areas coincide with spatial gaps in raypath
coverage. In these areas, there is either no sampling, or given
the noise in the data, insufficient sampling to recover the
true model.

[41] Figure 13e demonstrates the effect of neglecting
mantle effects in the data corrections. Here we display the
recovered model using all three data sets with additional
noise added that is equal to the travel time corrections asso-
ciated with the Della Mora et al. [2011] mantle model.
These noise values range from –0.7 s to 1.2 s depending
on the ray path geometry. From this figure it is evident
that mantle corrections have very little effect on the final
model, as the recovered models in Figures 13d and 13e

Figure 9. As for Figure 8 but with South Sandwich Islands data included.

5477



YOUNG ET AL.: LOWERMOST MANTLE P WAVE TOMOGRAPHY

Figure 10. As for Figure 7 but for the PKPab-df and PKPbc-df data sets combined.

are nearly indistinguishable. When mantle corrections are
considered (Figure 13d), however, the RMS of the veloc-
ity variations is slightly more accurately recovered (1.38%
versus 1.32%).

[42] The second set of synthetic tests is designed to com-
pare our Bayesian inversion approach to that of a more
traditional linearized inversion method, namely one that uses
a lower triangular-upper triangular decomposition algorithm
[e.g., Tkalc̆ić et al., 2002]. The true model of this second
test has structure of varying size, shape, and orientation
(Figure 14) as to test the limits of the resolution potential
of the complete data set (PKPab-df, PKPbc-df, and PcP-P)
given each inversion method. The positive anomalies are
2% faster than the ak135 average velocity and the nega-
tive anomalies are 2% slower. This time, no noise is added
to the synthetics. For the Bayesian inversion, we allow the
perturbations to range between ˙5%. In areas of good ray-
path coverage, the method is able to retrieve the pattern
and strength of the velocity pattern with reasonable accu-
racy (Figure 14). The RMS of the velocity perturbations
is 1.44% (actual RMS is 2%). The method fails only to
retrieve the structures of the finest scale (small circles of
6ı (�360 km) diameter). The Bayesian approach is clearly
able to retrieve sharp velocity contrasts and both small- and
large-scale features in areas of adequate raypath sampling.
The method is also shown to be fully capable of recov-
ering curved discontinuities despite the fact that Voronoi
cells have only straight edges; after averaging many differ-
ently positioned straight-sided polygons, curved lines can
be retrieved.

[43] For the linear inversion, we use the same data set but
now parameterize the model into 5ı�5ı squares. We apply
a damping factor of 5�105, but no smoothing regularization,
as was applied to the favored model of Tkalc̆ić et al. [2002].
Blocks of inadequate sampling are omitted (colored black).
Although we do not intend to provide an exhaustive compar-
ison between methods, the linear inversion technique using
this set of tuning parameters clearly struggles to recover
the complex velocity pattern compared to the Bayesian
inversion approach (Figure 14). Only in regions of best sam-
pling (southwest Pacific, west Asia, and the Middle East,
Central America) is the true model moderately recovered.
Even then, the amplitude of the perturbations is significantly

underestimated. The RMS of the linear inversion result is
only 0.8%. Although the computational cost of a Bayesian
inversion is in general 3 to 4 orders of magnitude greater
than that of the linear approach of Tkalc̆ić et al. [2002], the
improved ability to recover perturbation amplitudes and both
velocity discontinuities and gradations and the provision of
uncertainty and data error estimates merit the additional time
and resources. Nonetheless, the immense computational cost
of ensemble inference approaches currently prohibits the
Bayesian inversion for whole mantle structure.

4.2. Models Using Different Data Subsets
[44] An image of P wave velocity variations in the low-

ermost mantle resulting from the PKPab-df data set alone
is shown in Figure 7. There were 3.5 million model itera-
tions produced on each of 60 CPU processors after running
for 200 h. The initial 2.5 million burn-in iterations were
discarded, and the model shown is the result of averaging
every 50th model of the subsequent iterations. The pattern
of velocity perturbations is complex, with the average num-
ber of cells used to parameterize the model being�200. The
uncertainty in the data is treated as a single hyperparameter,
which after inversion peaks at�0.60 s. The RMS of the per-
turbations is 1.07%, although the maximum perturbation is
4.74%. This figure is several times larger than previous esti-
mates [e.g., Tkalc̆ić et al., 2002; Antolik et al., 2003; Lei and
Zhao, 2006; Houser et al., 2008; Li et al., 2008; Della Mora
et al., 2011; Soldati et al., 2012], which were driven by sub-
jective choices for damping. Because our method does not
require explicit damping of the final model and such strong
velocity perturbations are required by the data, we are able
to justify a large variance reduction. The final RMS of the
residuals is 0.58 s, which is 59% less than the RMS of the
residuals resulting from a homogeneous lowermost mantle
layer with a velocity of 13.61 km/s.

[45] Next, we invert the PcP-P data set alone (Figure 12).
The resulting average model is similar to the results of
the PKPab-df inversion in that, in general, Asia, Central
America, and the Middle East are fast, while the north
Atlantic, southwest Pacific, and North America are in gen-
eral slow. Areas of discrepancy include South America,
Australia, and Africa, where PcP-P coverage is poor. The
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Figure 11. (a) The result (model TRH_KC) of the previous high-quality data set of PKPab-df and
PcP-P differential travel times from Tkalc̆ić et al. [2002] who performed a linear inversion for the P
wave velocity structure of the lowermost mantle. Areas of insufficient data coverage are shown by black
squares. (b) Bayesian inversion results for the PKPab-df and PcP-P data sets of this study. Note the
difference between the color scale ranges and the root-mean-square values of the velocity perturbations
between the two models. (c) A map of the standard deviations of the velocity distributions for each
latitude/longitude pair of the model in Figure 11b. (d) Posterior probability distribution of the PKPab-
df and PcP-P noise and (e) posterior probability distribution of the number of cells used to describe
the model.
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Figure 12. As for Figure 7 but for the PcP-P data set.

basic congruency between areas of adequate coverage, how-
ever, suggests that the inner and outer core structure have no
more than a minor effect on the differential travel times. The
estimated noise in the PcP-P data set (0.57 s) is compara-
ble to that of the PKPab-df data set and much greater than
that of the PKPbc-df data set. The noise is likely due to a
combination of measurement errors, core mantle boundary
topography effects on the PcP travel times, mantle structure,
and forward modeling approximations. Given the poorer
sampling and much greater sensitivity to mantle structure,
the PcP-P data set is less coherent than the PKP data sets.
Moreover, the PcP data only sample the lowermost mantle
once, whereas PKPbc and PKPab rays sample it on both the
source and receiver side. The resulting lack of flexibility in
redistribution of the residual times to either the source or
receiver side combined with the aforesaid poorer coherency
means that many Voronoi cells are required to achieve the
55% decrease in residual variance. The hierarchical Bayes
approach of this study accounts for this effect when jointly
inverting different data types, as less weight is naturally
given to the more inconsistent data sets.

[46] When the PKPab-df and PKPbc-df data sets are com-
bined (Figure 10), the resolution improves relative to when
PKPab-df is used alone, and the average number of cells
used to parameterize the models is �800. This general
increase in the required number of cells is reflected in the
obvious increase in model resolution (Figure 13), although
the main features of PKPab-df-only and the PKPab-df +
PKPbc-df models are in excellent agreement, indicating a
strong compatibility between the two data sets. The resulting
average model explains 51% of the PKPab-df residuals and
49% of the PKPbc-df residuals, and the RMS of the pertur-
bations is 1.02%. The estimated noise of the PKPab-df data
set is significantly greater than that of the PKPbc-df data set
(0.62 versus 0.34 s). This difference is likely a reflection of
multiple factors, one of which is the decrease in scatter of
the PKPbc-df residual data compared to the PKPab-df resid-
ual data (Figure 5). Another consideration is that PKPbc
waves sample much shallower in the inner core, which
means they are less attenuated, and therefore more easily
and accurately measured than the deeper-sampling PKPab
waves. Additionally, one must apply a Hilbert transform to

Figure 13. The recovered model using (a) the PKPab-df data set only, (b) the PKPbc-df data set only,
(c) the PcP-P data set only, (d) all three data sets, and (e) all three data sets with additional noise added.
Also shown is (f) the true model used in the checkerboard resolution tests to produce synthetic data. This
input model (Figure 13f) has alternating 20ı squares of ˙2% velocity perturbations.
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Figure 14. Synthetic resolution test using (top) an irregular true model. The positive anomalies are 2%
faster than the ak135 average velocity and the negative anomalies are 2% slower. (middle) The recov-
ered model using a Bayesian inversion of the PKPab-df, PKPbc-df, and PcP-P data sets. (bottom) The
recovered model using a more traditional linearized inversion method from Tkalc̆ić et al. [2002].

the PKPab waveforms prior to comparison with the PKPdf
waveform; this procedure can result in approximations and
errors in the measurements. Finally, the PKPbc and PKPdf
raypaths travel much closer together throughout the mantle
than the PKPab and PKPdf raypaths, meaning that unwanted
mantle effects will be greatly diminished. Nonetheless, the
PKPab-df data set is critical to the inversion as it provides
significantly better spatial coverage than the smaller PKPbc-
df data set. The noise estimates of the two data sets act as
relative weights in the inversion. Even though the PKPbc-
df data set is smaller, it has less associated error and will
therefore have a similar impact on the final model as the
PKPab-df data set.

[47] Next, we add the PcP-P differential travel times to
the PKPab-df times (Figure 11b). The two data sets have
similar noise estimates (0.76 s for PcP-P and 0.61 s for
PKPab-df) and so have comparable weight in the inver-
sion. Figure 11a shows the tomographic model TRH_KC
from the work of Tkalc̆ić et al. [2002] for comparison. In
this case, a linear inversion of PKPab-df and PcP-P travel
time residuals was performed on a grid of variable size

blocks. Blocks of inadequate sampling are colored black.
Since damping and smoothing procedures were applied, the
amplitude variations of model TRH_KC (RMS of 0.31%)
are about a third as strong as the amplitudes retrieved by our
modeling (RMS of 0.88%). The absence of block param-
eterization and smoothing procedures and the increase in
spatial sampling all contribute to the increased resolution
of our final model. Despite the vast differences in inver-
sion method, the large-scale features of the two models
are in good agreement. For example, Canada, the south-
west Pacific, most of South America, and the south Atlantic
are slow, while Asia, Central America, Antarctica, and the
Middle East are fast. Even some of the finer-scale features
are congruous, such as the sharp transition from fast to slow
velocities at the eastern Alaskan border. Besides improve-
ments in resolution, our model is noteworthy in that we
are able to retrieve the strength of perturbations as well
as the model uncertainty (Figure 11c). Model uncertainty
is expressed visually by plotting the standard deviation
of the velocity distribution at each pixel. Another appeal-
ing feature is that, because the variable nature of both the
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parameterization and the data noise, the resolution of the
final model is automatically controlled by the information
content of the data.

4.3. Final P Wave Velocity Model
[48] When we invert all three data sets (Figure 8), we

obtain a high-resolution P wave velocity model of the
lowermost mantle as evidenced by the resolution test in
Figure 13f. Convergence requires over 500 CPU hours on
each of 60 processors. The PKPbc-df data set has the low-
est estimated noise level of 0.37 s; the PcP-P and PKPab-df
noise estimates are again very close (0.78 s and 0.66 s). The
RMS of the velocity perturbations is 0.87% with a maxi-
mum perturbation of 4.74%, which is significantly stronger
than previous estimates [e.g., Tkalc̆ić et al., 2002; Antolik et
al., 2003; Lei and Zhao, 2006; Houser et al., 2008; Li et al.,
2008; Della Mora et al., 2011; Soldati et al., 2012].

[49] The resulting model reduces the differential travel
time variance relative to a homogeneous model of
13.61 km/s by 45% for the PKPbc-df data set, 49% for the
PKPab-df data set, and 23% for the PcP-P data set, which
suggests a general compatibility of the three data sets. The
noise, sampling, and size of each data set prevents further
reduction of data misfit. Traditional linear inversions seek to
produce a single model that minimizes the variance of the
data; the Bayesian method, however, produces an ensemble
of solutions whose complexity is reflected by the interpreted
noise in the data. The data uncertainty determines how accu-
rately the measurements are fit. Consequently, one should
not consider the variance reductions given in the study in
quite the same light as would be done for a linearized inver-
sion, as data noise and unmodeled effects are also accounted
for. Furthermore, the average model is only one measure of
the ensemble of solutions, and it is often possible to select
individual models that yield greater reductions in data vari-
ance [e.g., Shapiro and Campillo, 2004; Moschetti et al.,
2010; Behr et al., 2010].

[50] The large-scale patterns inferred here are consistently
seen in other travel time tomography models [e.g., van der
Hilst and Kárason, 1999; Tkalc̆ić et al., 2002; Antolik et al.,
2003; Vasco et al., 2006; Zhao, 2004; Lei and Zhao, 2006;
Li et al., 2008; Houser et al., 2008; Zhao, 2009; Soldati
et al., 2012], as there is agreement about the presence
of fast velocities beneath Central America and East Asia
and slow velocities beneath south Africa and the south-
west Pacific. Common areas of discrepancy include North
America, Australia, and Europe, which could be a result
of poorer sampling, systematic errors in travel time picks,
inversion method, and/or data noise. The chief advantage of
our model over previous models is that because there is no
arbitrary smoothing, damping, or grid-spacing, the scale-size
and amplitude of the velocity heterogeneity are controlled
directly by the data.

5. Discussion
[51] The primary goal of this work is to invert for the

P wave velocity heterogeneity in the lowermost mantle as
can be reliably retrieved from body wave differential travel
times. The scale length of the heterogeneity depends on the
data set(s) used, but invariably structure ranging from wave-
lengths of hundreds to thousands of kilometers is revealed.

Lowermost mantle heterogeneity at even smaller scales is
almost certainly present, however, [e.g., Cormier, 1999;
Helffrich, 2002; Margerin and Nolet, 2003; Garcia et al.,
2009], but its resolution is not justified by the inferred noise
levels of our data sets. It is important to note that no sin-
gle data set, or even pair of data sets, produces as high
resolution a map as does the combination of all three data
sets (Figure 13). Each data set provides unique and invalu-
able information that is critical to revealing the complexities
of the lowermost layer. The PKPbc-df data set is crucial
to identifying the exact location of anomaly edges, as the
PKPbc and PKPdf raypaths are very close within the low-
ermost mantle (raypath separation < 3ı ). The PKPab-df
data set is the largest and provides the best spatial cover-
age. However, the PKPab waves sample deeper in the inner
core, making them more attenuated and more difficult to
measure that the more shallow-sampling PKPbc waves. The
PKPab-df data set also suffers from small errors resulting
from the application of the Hilbert transform prior to align-
ment of the PKPab waveform with the PKPdf waveform.
Finally, the PcP-P data set is important because it is not
subject to inner core effects and because of its ability to
resolve ambiguity about the location of heterogeneity on
source or receiver sides. The capabilities of our inversion
approach combined with an exceptionally high-quality data
set enables the inversion for a global velocity model of the
lowermost mantle with unprecedented reliability. The dif-
ference between our results and previous models is likely
due to our evasion of block parameterization, truncation of
spherical harmonic expansions, and smoothing and damping
regularization and our improvements to spatial coverage and
data quality.

[52] The RMS heterogeneity level of 0.87% from our final
tomographic model is significantly larger than the majority
of previous estimates obtained from body wave travel time
analysis [Tkalc̆ić et al., 2002; Zhao, 2004; Lei and Zhao,
2006; Zhao, 2009; Houser et al., 2008; Soldati et al., 2012].
Garcia et al. [2009], who performed a statistical analysis of
P wave heterogeneity in the lowermost mantle also obtained
a higher estimate (1.2˙0.3%). This can be explained by the
fact that like in our study, Garcia et al. [2009] did not use
the damping procedures typically employed in other inver-
sion approaches. There is evidence, however, that P wave
velocity variations in the lowermost mantle can reach even
greater extremes than is revealed in our study. For example,
in ultralow velocity zones (ULVZs) P wave anomalies can
be up to 10% [Ni and Helmberger, 2001b; Garnero et al.,
1998]. We cannot expect to reveal such features, however,
for the thickness of ULVZs is on the order of tens of kilo-
meters [Wen and Helmberger, 1998; Garnero et al., 1998],
whereas our model presents a depth-averaged image of the
lowermost 300 km.

[53] Distinguishing between the possible origins of the
imaged P wave velocity anomalies is difficult, but our
maps indicate that the cause(s) must correspond to lateral
dimensions on the order of hundreds to a few thousand
kilometers. This is an important constraint which supports
the findings of both large-scale tomographic models [e.g.,
Sylvander et al., 1997; Zhao, 2004] and work on local-
ized regions [e.g., Garnero and Lay, 2003]. The large-scale
features of our final model agree well with the results of
Tkalc̆ić et al. [2002]. For example, Canada, the southwest
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Figure 15. (a) The P wave model of the lowermost 300 km of the mantle from this study. (b) The P
wave model of the lowermost 200 km of the mantle from Houser et al. [2008]. (c) The P wave model
of the lowermost 200 km of the mantle from Soldati et al. [2012]. Note the differences in the color scale
ranges for the different models. The root-mean-square (RMS) value of each model is noted.

Pacific, most of South America, and the south Atlantic
are slow, while Asia, Central America, Antarctica, and the
Middle East are fast. Even some of the finer-scale features
are congruous, such as the sharp transition from fast to slow
velocities at the eastern Alaskan border. Besides improve-
ments in resolution, our model is noteworthy in that we are
able to retrieve the strength of perturbations as well as the
model uncertainty (Figure 11c).

[54] Figure 15 shows a comparison of our results with
those of Houser et al. [2008] and Soldati et al. [2012].
The P wave model from Houser et al. [2008] is of the
lowermost 200 km of the mantle. Over 290,000 P, PP,
PP-P, and Rayleigh wave travel times were used in a least-
squares inversion on a grid of equal area blocks (4ı�4ı
at the equator). The applied smoothing and damping is the
likely cause of the 0.42% RMS of the velocity perturbations,

which is significantly less than that of our model. Whether
in regions of good or poor raypath coverage, the RMS
of the perturbations in our model is consistently higher
than that of the Houser et al. [2008] model. For example,
the RMS of only the well-sampled Asia region (from 30
to 120ı in longitude and 30 and 80ı in latitude) for our
model is 0.98%, while it is only 0.53% in the Houser et
al. [2008] model. The RMS of the more poorly sampled
southeast Pacific region (from –180 to –100ı in longitude
and 0 to –60ı in latitude) is 0.64 and 0.49, respectively.
The areas of best coverage in the Houser et al. [2008]
model include Asia, the northwest Pacific, and the north
Atlantic. These areas agree with our results, and it is only in
areas of poor resolution (as determined by the checkerboard
resolution tests of Houser et al. [2008]) that we see sig-
nificant discrepancies. Our model is slow beneath Canada,
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south Australia, and mid-South America and fast beneath
the mid-east Pacific whereas the opposite holds true in the
Houser et al. [2008] model. Because very few P, PP, and
PP-P raypath geometries are sensitive to lowermost mantle
structure, the resolving power in the lowermost mantle of
the Houser et al. [2008] study is much weaker than that
of our study. Since we employ a variety of seismic phase
measurements that sample the lowermost mantle and use
differential travel times, our resolution is such that most
areas of the globe in the lowermost mantle layer can be
reliably retrieved.

[55] The P wave model of the lowermost 200 km of the
mantle from Soldati et al. [2012] is shown in Figure 15c.
Over 880,000 ISC PcP, PKPbc, PKPdf, and P travel times
along with a viscosity profile of the mantle were used in
a least squares inversion on a grid of equal area blocks
(5ı�5ı at the equator). Here the RMS of the perturbations is
even lower (0.27% overall, 0.32% in the well-sampled Asia
region, and 0.36% in the poorly sampled southeast Pacific
region), but we see more agreement with the distribution
of perturbations. This is likely due to the overall increase
in data number and data type. There are strikingly similar
features in Africa and Asia; however, there are also dif-
ferences elsewhere, such as the mid-Pacific, Australia, and
North America. Again, this is attributable to differences in
data quality, spatial coverage, and handling of data noise.
For example, there are likely to be systematic biases in
the PKP catalog data due to the fact that no Hilbert trans-
form is applied when calculating differential travel times.
The cross-correlation coefficient between the Houser et al.
[2008] and the Soldati et al. [2012] models is 0.224; that
between ours and that of Houser et al. [2008] is 0.149,
and that between ours and that of Soldati et al. [2012] is
0.146. This suggests a reasonable level of agreement with
our model, especially considering that we do not apply any
smoothing regularization.

[56] The lowermost mantle has long been considered the
graveyard of subducted slabs [Richards and Engebretson,
1992; Grand, 2002] and the birth place of mantle plumes
[Yuen and Peltier, 1980; Stacey and Loper, 1983]. One pos-
sible explanation for the large-scale anomalously fast zones
at the bottom of the mantle is the penetration of slab material
into the lowermost mantle and its subsequent repose at the
base of the mantle. In this manner, the thermal and chemical
heterogeneity of a “slab graveyard” would account for some
of the lowermost mantle velocity anomalies [Grand, 2002;
Garnero and Lay, 2003]. There has been some evidence in
support of the connectivity of slabs from the surface down
to the bottom of the mantle. For example, the Caribbean is
consistently shown to have high-velocity structures extend-
ing down to the core mantle boundary [Kito et al., 2008].
There is geochemical evidence as well that crustal material
can descend to the lowermost mantle. Hirose et al. [1999]
argue that former basaltic crust with perovskite lithology
would gravitationally sink to the deep mantle.

[57] Whether chemical or thermal in nature, the causes of
the velocity heterogeneity in the lowermost mantle must be
considered to have a larger impact on P wave velocity than
previously suggested by global tomographic models, as evi-
denced by the significant increase in the RMS of the velocity
anomalies predicted by our results. This is in line with
the strong lateral velocity gradients across compositionally

varying domains discovered previously from a direct com-
parison of PcP-P and ScS-S data [Tkalc̆ić and Romanowicz,
2002]. Furthermore, velocity variations up to 4.74%, as seen
in our study, is unlikely merely an effect of the core mantle
boundary topography, and we instead favor lateral varia-
tions in temperature and/or chemistry as explanation for the
observed compressional wave velocity variations. A joint
inversion for velocity structure and topography is needed to
test this interpretation.

6. Conclusions
[58] We present a new approach to global tomography

using a hand-picked data set of PKPab-df, PKPbc-df, and
PcP-P differential travel times. We use a probabilistic, fully
nonlinear Bayesian inversion scheme to invert for lowermost
mantle structure and obtain a new model of the distribu-
tion and amplitude of the P wave velocity heterogeneity
in the lowermost mantle. Model parameters, including the
level of data noise, are treated as unknowns in the inversion
problem and are therefore driven by the information con-
tent of the data. The resulting P wave velocity model reveals
heterogeneity on a range of scale lengths and provides an
important bridge between the long-wavelength images pro-
duced from previous global models and the very short-scale
mapping of localized scattering studies. The root-mean-
square of the velocity perturbations in our final tomographic
model is 0.87%, which is significantly larger than previ-
ous estimates obtained from a global-scale analysis of body
wave travel times. Importantly, model uncertainty is also
retrieved, which is a major step forward for global-scale
tomographic inversions.

[59] Our results provide a unique view of the lowermost
mantle, as the resolving capability is better than that of pre-
vious global models, yet is not limited spatially to a local or
regional context as are current high-resolution images based
on scattering or array seismology methods. The most dom-
inant features of our preferred model include fast velocities
beneath Central America and east Asia and slow velocities
beneath southern Africa and the southwest Pacific. These
large-scale patterns agree with other travel time tomography
models [e.g., van der Hilst and Kárason, 1999; Tkalc̆ić et al.,
2002; Antolik et al., 2003; Vasco et al., 2006; Zhao, 2004; Lei
and Zhao, 2006; Li et al., 2008; Houser et al., 2008; Zhao,
2009; Soldati et al., 2012]. Our model also includes new
insights on the P wave velocity structure of more difficult
to image regions such as Africa, Canada, South America,
and Australia. Most of these regions are slower than aver-
age in our model; however, the opposite holds true in the
models of some previous studies [e.g., Houser et al., 2008;
Soldati et al., 2012].

[60] A further consideration includes accounting for the
possible effects of topography on the travel time residu-
als, which will involve a joint inversion for topography and
velocity. This inclusion will likely decrease the data vari-
ance and increase the reliability of our velocity model. In
this paper, we made the assumption that the lowermost man-
tle can be modeled as a single layer. Forthcoming work
also includes allowing for multiple layers in the lowermost
mantle model, where the thickness of these layers is an
unknown. Given the continual increase in available com-
puting power and data records, the Bayesian approach to
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inversion should enable an ever-improving understanding
of lowermost mantle heterogeneity and its geodynamical
implications.
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