1,126 research outputs found

    Dark matter component decaying after recombination: lensing constraints with Planck data

    Full text link
    It has been recently suggested~\cite{Berezhiani:2015yta} that emerging tension between cosmological parameter values derived in high-redshift (CMB anisotropy) and low-redshift (cluster counts, Hubble constant) measurements can be reconciled in a model which contains subdominant fraction of dark matter decaying after recombination. We check the model against the CMB Planck data. We find that lensing of the CMB anisotropies by the large-scale structure gives strong extra constraints on this model, limiting the fraction as F<8%F<8\% at 2\,σ\sigma confidence level. However, investigating the combined data set of CMB and conflicting low-zz measurements, we obtain that the model with F2 ⁣ ⁣5F\approx2\!-\!5\% exhibits better fit (by 1.5-3\,σ\sigma depending on the lensing priors) compared to that of the concordance Λ\LambdaCDM cosmological model.Comment: 5 pages, 4 figures; v2: journal version, pages++, figures+

    Dark matter and generation of galactic magnetic fields

    Get PDF
    A new scenario for creation of galactic magnetic fields is proposed which is operative at the cosmological epoch of the galaxy formation, and which relies on unconventional properties of dark matter. Namely, it requires existence of feeble but long range interaction between the dark matter particles and electrons. In particular, millicharged dark matter particles or mirror particles with the photon kinetic mixing to the usual photon can be considered. We show that in rotating protogalaxies circular electric currents can be generated by the interactions of free electrons with dark matter particles in the halo, while the impact of such interactions on galactic protons is considerably weaker. The induced currents may be strong enough to create the observed magnetic fields on the galaxy scales with the help of moderate dynamo amplification. In addition, the angular momentum transfer from the rotating gas to dark matter component could change the dark matter profile and formation of cusps at galactic centers would be inhibited. The global motion of the ionized gas could produce sufficiently large magnetic fields also in filaments and galaxy clusters.Comment: 8 pages, refined version published in Eur. Phys. J. C73, 2620 (2013

    No evidence for gamma-ray halos around active galactic nuclei resulting from intergalactic magnetic fields

    Full text link
    We analyze the gamma-ray halo around stacked AGNs reported in Ap.J.Lett., 2010, 722, L39. First, we show that the angular distribution of gamma-rays around the stacked AGNs is consistent with the angular distribution of the gamma-rays around the Crab pulsar, which is a point source for Fermi/LAT. This makes it unlikely that the halo is caused by an electromagnetic cascade of TeV photons in the intergalactic space. We then compare the angular distribution of gamma-rays around the stacked AGNs with the point-spread function (PSF) of Fermi/LAT and confirm the existence of an excess above the PSF. However, we demonstrate that the magnitude and the angular size of this effect is different for photons converted in the front and back parts of the Fermi/LAT instrument, and thus is an instrumental effect.Comment: accepted to A&
    corecore