127 research outputs found

    A relativistic dynamical model for pi-N scattering

    Full text link
    We present a unitary relativistic quasi-potential model for describing the low-energy pion-nucleon interaction, based on the equal time Bethe-Salpeter equation. It preserves the covariant structure of a relativistic spin 1/2 particle for the nucleon propagator, to be contrasted to other quasi-potential approximations.Comment: 4 pages, Latex2e. To appear in the Proceedings of XV Int. Conf. on Few-Body Problems in Physics (Groningen, July 1997

    Relativistic description of proton-proton bremsstrahlung

    Get PDF
    We investigate the influence of negative-energy states in proton-proton bremsstrahlung in a fully relativistic framework using the t-matrix of Fleischer and Tjon. The contribution from negative-energy states in the single-scattering diagrams are found to be large, indicating that relativistic effects are sizable. The rescattering contribution compensates some of the effect, but at higher photon energies we find that the relativistic contributions become increasingly more important. The cancellation found at lower energies is shown to be due to a low-energy theorem

    The η\eta-3N problem with separable interactions

    Full text link
    The η\eta-3N-interaction is studied within the four-body Faddeev-Yakubovsky theory adopting purely separable forms for the two- and three-body subamplitudes, limiting the basic two-body interactions to s-waves only. The corresponding separable approximation for the integral kernels is obtained by using the Hilbert-Schmidt procedure. Results are presented for the η\eta-3^3H scattering amplitude and for the total elastic cross section for energies below the triton break-up threshold.Comment: revised version accepted for Phys. Rev. C, 16 pages revtex including 6 eps-figures, formal part shortene

    Two-Boson Exchange Physics: A Brief Review

    Full text link
    Current status of the two-boson exchange contributions to elastic electron-proton scattering, both for parity conserving and parity-violating, is briefly reviewed. How the discrepancy in the extraction of elastic nucleon form factors between unpolarized Rosenbluth and polarization transfer experiments can be understood, in large part, by the two-photon exchange corrections is discussed. We also illustrate how the measurement of the ratio between positron-proton and electron-proton scattering can be used to differentiate different models of two-photon exchange. For the parity-violating electron-proton scattering, the interest is on how the two-boson exchange (TBE), \gamma Z-exchange in particular, could affect the extraction of the long-sought strangeness form factors. Various calculations all indicate that the magnitudes of effect of TBE on the extraction of strangeness form factors is small, though can be large percentage-wise in certain kinematics.Comment: 6 pages, 5 figures, prepared for Proceedings of the fifth Asia-Pacific Conference on Few-Body Problems in Physics (APFB2011), Seoul, Korea, August 22-26, 2011, to appear in Few-Body Systems, November 201

    Relativistic description of electron scattering on the deuteron

    Full text link
    Within a quasipotential framework a relativistic analysis is presented of the deuteron current. Assuming that the singularities from the nucleon propagators are important, a so-called equal time approximation of the current is constructed. This is applied to both elastic and inelastic electron scattering. As dynamical model the relativistic one boson exchange model is used. Reasonable agreement is found with a previous relativistic calculation of the elastic electromagnetic form factors of the deuteron. For the unpolarized inelastic electron scattering effects of final state interactions and relativistic corrections to the structure functions are considered in the impulse approximation. Two specific kinematic situations are studied as examples.Comment: (19 pages in revtex + 15 figures not included, available upon request.) report THU-93-10

    Magnetic string contribution to hadron dynamics in QCD

    Get PDF
    Dynamics of a light quark in the field of static source (heavy-light meson) is studied using the nonlinear Dirac equation, derived recently. Special attention is paid to the contribution of magnetic correlators and it is found that it yields a significant increase of string tension at intermediate distances. The spectrum of heavy-light mesons is computed with account of this contribution and compared to experimental and lattice data.Comment: 10 pages Revte

    Bound state solutions of scalar QED_{2+1} for zero photon mass

    Get PDF
    The Feynman-Schwinger representation is used to study the behavior of solutions of scalar QED in (2+1) dimensions. The limit of zero photon mass is seen to be smooth. The Bethe-Salpeter equation in the ladder approximation also exhibits this property. They clearly deviate from the behavior in the nonrelativistic limit. In a variational analysis we show that this difference can be attributed to retardation effects of relativistic origin.Comment: LaTeX, 11 pages, 2 Postscript figures; uses `elsart.sty' and `epsf.sty' (both included with the figures in one uuencoded- compressed-tar-package); accepted for publication in Physics Letters B. (elsart12.sty now also included

    Universality in Four-Boson Systems

    Full text link
    We report recent advances on the study of universal weakly bound four-boson states from the solutions of the Faddeev-Yakubovsky equations with zero-range two-body interactions. In particular, we present the correlation between the energies of successive tetramers between two neighbor Efimov trimers and compare it to recent finite range potential model calculations. We provide further results on the large momentum structure of the tetramer wave function, where the four-body scale, introduced in the regularization procedure of the bound state equations in momentum space, is clearly manifested. The results we are presenting confirm a previous conjecture on a four-body scaling behavior, which is independent of the three-body one. We show that the correlation between the positions of two successive resonant four-boson recombination peaks are consistent with recent data, as well as with recent calculations close to the unitary limit. Systematic deviations suggest the relevance of range corrections.Comment: Accepted for publication in special issue of Few-Body Systems devoted to the Sixth Workshop on the Critical Stability of Quantum Few-Body Systems, October 2011, Erice, Sicily, Ital

    Universality in the Three-Body Problem for 4He Atoms

    Full text link
    The two-body scattering length a for 4He atoms is much larger than their effective range r_s. As a consequence, low-energy few-body observables have universal characteristics that are independent of the interaction potential. Universality implies that, up to corrections suppressed by r_s/a, all low-energy three-body observables are determined by a and a three-body parameter \Lambda_*. We give simple expressions in terms of a and \Lambda_* for the trimer binding energy equation, the atom-dimer scattering phase shifts, and the rate for three-body recombination at threshold. We determine \Lambda_* for several 4He potentials from the calculated binding energy of the excited state of the trimer and use it to obtain the universality predictions for the other low-energy observables. We also use the calculated values for one potential to estimate the effective range corrections for the other potentials.Comment: 23 pages, revtex4, 6 ps figures, references added, universal expressions update

    Universal Correlations in Pion-less EFT with the Resonating Group Model: Three and Four Nucleons

    Full text link
    The Effective Field Theory "without pions" at next-to-leading order is used to analyze universal bound state and scattering properties of the 3- and 4-nucleon system. Results of a variety of phase shift equivalent nuclear potentials are presented for bound state properties of 3H and 4He, and for the singlet S-wave 3He-neutron scattering length a_0(3He-n). The calculations are performed with the Refined Resonating Group Method and include a full treatment of the Coulomb interaction and the leading-order 3-nucleon interaction. The results compare favorably with data and values from AV18(+UIX) model calculations. A new correlation between a_0(3He-n) and the 3H binding energy is found. Furthermore, we confirm at next-to-leading order the correlations, already found at leading-order, between the 3H binding energy and the 3H charge radius, and the Tjon line. With the 3H binding energy as input, we get predictions of the Effective Field Theory "without pions" at next-to-leading order for the root mean square charge radius of 3H of (1.6\pm 0.2) fm, for the 4He binding energy of (28\pm 2.5) MeV, and for Re(a_0(3He-n)) of (7.5\pm 0.6)fm. Including the Coulomb interaction, the splitting in binding energy between 3H and 3He is found to be (0.66\pm 0.03) MeV. The discrepancy to data of (0.10\mp 0.03) MeV is model independently attributed to higher order charge independence breaking interactions. We also demonstrate that different results for the same observable stem from higher order effects, and carefully assess that numerical uncertainties are negligible. Our results demonstrate the convergence and usefulness of the pion-less theory at next-to-leading order in the 4He channel. We conclude that no 4-nucleon interaction is needed to renormalize the theory at next-to-leading order in the 4-nucleon sector.Comment: 24 pages revtex4, including 8 figures as .eps files embedded with includegraphicx, leading-order results added, calculations include the LO three-nucleon interaction explicitly, comment on Wigner bound added, minor modification
    corecore