86 research outputs found
The SPINK gene family and celiac disease susceptibility
The gene family of serine protease inhibitors of the Kazal type (SPINK) are functional and positional candidate genes for celiac disease (CD). Our aim was to assess the gut mucosal gene expression and genetic association of SPINK1, -2, -4, and -5 in the Dutch CD population. Gene expression was determined for all four SPINK genes by quantitative reverse-transcription polymerase chain reaction in duodenal biopsy samples from untreated (n = 15) and diet-treated patients (n = 31) and controls (n = 16). Genetic association of the four SPINK genes was tested within a total of 18 haplotype tagging SNPs, one coding SNP, 310 patients, and 180 controls. The SPINK4 study cohort was further expanded to include 479 CD cases and 540 controls. SPINK4 DNA sequence analysis was performed on six members of a multigeneration CD family to detect possible point mutations or deletions. SPINK4 showed differential gene expression, which was at its highest in untreated patients and dropped sharply upon commencement of a gluten-free diet. Genetic association tests for all four SPINK genes were negative, including SPINK4 in the extended case/control cohort. No SPINK4 mutations or deletions were observed in the multigeneration CD family with linkage to chromosome 9p21-13 nor was the coding SNP disease-specific. SPINK4 exhibits CD pathology-related differential gene expression, likely derived from altered goblet cell activity. All of the four SPINK genes tested do not contribute to the genetic risk for CD in the Dutch population
Recommended from our members
Diversity in Expression of Phosphorus (P) Responsive Genes in Cucumis melo L
Phosphorus (P) is a major limiting nutrient for plant growth in many soils. Studies in model species have identified genes involved in plant adaptations to low soil P availability. However, little information is available on the genetic bases of these adaptations in vegetable crops. In this respect, sequence data for melon now makes it possible to identify melon orthologues of candidate P responsive genes, and the expression of these genes can be used to explain the diversity in the root system adaptation to low P availability, recently observed in this species
Recommended from our members
An integrated bioinformatics analysis reveals divergent evolutionary pattern of oil biosynthesis in high- and low-oil plants
Seed oils provide a renewable source of food, biofuel and industrial raw materials that is important for humans. Although many genes and pathways for acyl-lipid metabolism have been identified, little is known about whether there is a specific mechanism for high-oil content in high-oil plants. Based on the distinct differences in seed oil content between four high-oil dicots (20~50%) and three low-oil grasses (<3%), comparative genome, transcriptome and differential expression analyses were used to investigate this mechanism. Among 4,051 dicot-specific soybean genes identified from 252,443 genes in the seven species, 54 genes were shown to directly participate in acyl-lipid metabolism, and 93 genes were found to be associated with acyl-lipid metabolism. Among the 93 dicot-specific genes, 42 and 27 genes, including CBM20-like SBDs and GPT2, participate in carbohydrate degradation and transport, respectively. 40 genes highly up-regulated during seed oil rapid accumulation period are mainly involved in initial fatty acid synthesis, triacylglyceride assembly and oil-body formation, for example, ACCase, PP, DGAT1, PDAT1, OLEs and STEROs, which were also found to be differentially expressed between high- and low-oil soybean accessions. Phylogenetic analysis revealed distinct differences of oleosin in patterns of gene duplication and loss between high-oil dicots and low-oil grasses. In addition, seed-specific GmGRF5, ABI5 and GmTZF4 were predicted to be candidate regulators in seed oil accumulation. This study facilitates future research on lipid biosynthesis and potential genetic improvement of seed oil content
The Prediction of Speech Recognition in Noise With a Semi-Implantable Bone Conduction Hearing System by External Bone Conduction Stimulation With Headband
Semi-implantable transcutaneous bone conduction devices are treatment options for conductive and mixed hearing loss (CHL/MHL). For counseling of patients, realistic simulation of the functional result is desirable. This study compared speech recognition in noise with a semi-implantable transcutaneous bone conduction device to external stimulation with a bone conduction device fixed by a headband. Eight German-language adult patients were enrolled after a semi-implantable transcutaneous bone conduction device (Bonebridge, Med-El) was implanted and fitted. Patients received a bone conduction device for external stimulation (Baha BP110, Cochlear) fixed by a headband for comparison. The main outcome measure was speech recognition in noise (Oldenburg Sentence Test). Pure-tone audiometry was performed and subjective benefit was assessed using the Glasgow Benefit Inventory and Abbreviated Profile of Hearing Aid Benefit questionnaires. Unaided, patients showed a mean signal-to-noise ratio threshold of 4.6 ± 4.2 dB S/N for speech recognition. The aided results were −3.3 ± 7.2 dB S/N by external bone conduction stimulation and −1.2 ± 4.0 dB S/N by the semi-implantable bone conduction device. The difference between the two devices was not statistically significant, while the difference was significant between unaided and aided situation for both devices. Both questionnaires for subjective benefit favored the semi-implantable device over external stimulation. We conclude that it is possible to simulate the result of speech recognition in noise with a semi-implantable transcutaneous bone conduction device by external stimulation. This should be part of preoperative counseling of patients with CHL/MHL before implantation of a bone conduction device
- …