80 research outputs found
Recent Advances in the Monitoring, Assessment and Management of Forest Pathogens and Pests
Tree pathogens and pests are fundamental components of forest ecosystems. By killing and decomposing susceptible trees, they regulate the cycle of nutrients and energy flow, thus shaping the structure and composition of forest stands. However, ecosystems can be seriously disrupted when the population density of these parasites increases beyond their tolerance level. Ascertaining the origin of pathogen and pest outbreaks, recognizing their causal agents in a precise and unequivocal way, while understanding their reproductive and dispersive dynamics are all crucial for the implementation of effective control measures. The studies collected in this special issue cover a wide range of topics in the field of forest pathology and entomology. Investigations range from molecular diagnosis of pathogens and pests to their monitoring and quantification in the field, from measurements of their proliferation rate to the analysis of their genetic variability, from the assessment of the role of plant diversity and ecosystem heterogeneity on pathogen and pest impacts to disease and pest management. Specific case studies show how applied research conducted with innovative methods is key to solving taxonomic issues that were, until now, controversial. The variety of experimental approaches and the range of scientific issues addressed document the trends and topicality of modern forest health protection science
Alien Invasive Pathogens and Pests Harming Trees, Forests, and Plantations: Pathways, Global Consequences and Management
Forest health worldwide is impacted by many invasive alien pathogens and pests (IAPPs) that cause significant harm, with severe economic losses and environmental alterations. Destructive tree pathogens and pests have in the past devastated our forests, natural landscapes and cityscapes and still continue to represent a serious threat. The main driver of pathogen and pest invasions is human activities, above all global trade, which allows these invasive species to overstep their natural distribution ranges. While natural transport occurs according to a regular, expected colonization pattern (based on the dispersive capacity of the organism), human-mediated transport takes place on a larger, unpredictable scale. In order for a pathogen or pest species to become invasive in a new territory it must overcome distinct stages (barriers) that strongly affect the outcome of the invasion. Early detection is crucial to enabling successful eradication and containment. Although sophisticated diagnostic techniques are now available for disease and pest surveillance and monitoring, few control and mitigation options are usable in forestry; of these, biological control is one of the most frequently adopted. Since invasion by pathogens and pests is an economic and ecological problem of supranational relevance, governments should endorse all necessary preventive and corrective actions. To this end, establishing and harmonizing measures among countries is essential, both for preventing new introductions and for diminishing the eventual range expansion of IAPPs present at a local scale. Research is fundamental for: (i) developing effective and rapid diagnostic tools; (ii) investigating the epidemiology and ecology of IAPPs in newly introduced areas; and (iii) supporting policymakers in the implementation of quarantine regulations
Population Dynamics of Native Parasitoids Associated with the Asian Chestnut Gall Wasp (Dryocosmus kuriphilus)
Native parasitoids may play an important role in biological control. They may either support or hinder the effectiveness of introduced nonnative parasitoids released for pest control purposes. Results of a three-year survey (2011–2013) of the Asian chestnut gall wasp (ACGW) Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae) populations and on parasitism rates by native indigenous parasitoids (a complex of chalcidoid hymenopterans) in Italian chestnut forests are given. Changes in D. kuriphilus gall size and phenology were observed through the three years of study. A total of 13 species of native parasitoids were recorded, accounting for fluctuating parasitism rates. This variability in parasitism rates over the three years was mainly due to the effect of Torymus flavipes (Walker) (Hymenoptera: Torymidae), which in 2011 accounted for 75% of all parasitoid specimens yet decreased drastically in the following years. This strong fluctuation may be related to climatic conditions. Besides, our data verified that parasitoids do not choose host galls based on their size, though when they do parasitize smaller ones, they exploit them better. Consequently, ACGWs have higher chances of surviving parasitism if they are inside larger galls
- …