7,820 research outputs found

    Classical Electron Model with Negative Energy Density in Einstein-Cartan Theory of Gravitation

    Full text link
    Experimental result regarding the maximum limit of the radius of the electron \sim 10^{-16} cm and a few of the theoretical works suggest that the gravitational mass which is a priori a positive quantity in Newtonian mechanics may become negative in general theory of relativity. It is argued that such a negative gravitational mass and hence negative energy density also can be obtained with a better physical interpretation in the framework of Einstein-Cartan theory.Comment: 12 Latex pages, added refs and conclusion

    Application of the method of lines for solutions of the Navier-Stokes equations using a nonuniform grid distribution

    Get PDF
    The feasibility of the method of lines for solutions of physical problems requiring nonuniform grid distributions is investigated. To attain this, it is also necessary to investigate the stiffness characteristics of the pertinent equations. For specific applications, the governing equations considered are those for viscous, incompressible, two dimensional and axisymmetric flows. These equations are transformed from the physical domain having a variable mesh to a computational domain with a uniform mesh. The two governing partial differential equations are the vorticity and stream function equations. The method of lines is used to solve the vorticity equation and the successive over relaxation technique is used to solve the stream function equation. The method is applied to three laminar flow problems: the flow in ducts, curved-wall diffusers, and a driven cavity. Results obtained for different flow conditions are in good agreement with available analytical and numerical solutions. The viability and validity of the method of lines are demonstrated by its application to Navier-Stokes equations in the physical domain having a variable mesh

    Numerical solutions of 3-dimensional Navier-Stokes equations for closed bluff-bodies

    Get PDF
    The Navier-Stokes equations are solved numerically. These equations are unsteady, compressible, viscous, and three-dimensional without neglecting any terms. The time dependency of the governing equations allows the solution to progress naturally for an arbitrary initial guess to an asymptotic steady state, if one exists. The equations are transformed from physical coordinates to the computational coordinates, allowing the solution of the governing equations in a rectangular parallelepiped domain. The equations are solved by the MacCormack time-split technique which is vectorized and programmed to run on the CDc VPS 32 computer. The codes are written in 32-bit (half word) FORTRAN, which provides an approximate factor of two decreasing in computational time and doubles the memory size compared to the 54-bit word size

    Transient radiative energy transfer in incompressible laminar flows

    Get PDF
    Analysis and numerical procedures are presented to investigate the transient radiative interactions of nongray absorbing-emitting species in laminar fully-developed flows between two parallel plates. The particular species considered are OH, CO, CO2, and H2O and different mixtures of these. Transient and steady-state results are obtained for the temperaure distribution and bulk temperature for different plate spacings, wall temperatures, and pressures. Results, in general, indicate that the rate of radiative heating can be quite high during earlier times. This information is useful in designing thermal protection systems for transient operations

    Interaction of transient radiation in nongray gaseous systems

    Get PDF
    A general formulation is presented to investigate the transient radiative interaction in nongray absorbing-emitting species between two parallel plates. Depending on the desired sophistication and accuracy, any nongray absorption model from line-by-line models to the wide band model correlations can be employed in the formulation to investigate the radiative interaction. Special attention is directed to investigate the radiative interaction in a system initially at a uniform reference temperature and suddenly the temperature of the bottom plate is reduced to a lower but constant temperature. The interaction is considered for the case of radiative equilibrium as well as for combined radiation and conduction. General as well as limiting forms of the governing equations are presented and solutions are obtained numerically by employing the method of variation of parameters. Specific results are obtained for CO, CO2, H2O, and OH. The information on species H2O and OH is of special interest for the proposed scramjet engine application. The results demonstrate the relative ability of different species for radiative interactions

    Effects of nose bluntness and shock-shock interactions on blunt bodies in viscous hypersonic flows

    Get PDF
    A numerical study was conducted to investigate the effects of blunt leading edges on the viscous flow field around a hypersonic vehicle such as the proposed National Aero-Space Plane. Attention is focused on two specific regions of the flow field. In the first region, effects of nose bluntness on the forebody flow field are investigated. The second region of the flow considered is around the leading edges of the scramjet inlet. In this region, the interaction of the forebody shock with the shock produced by the blunt leading edges of the inlet compression surfaces is analyzed. Analysis of these flow regions is required to accurately predict the overall flow field as well as to get necessary information on localized zones of high pressure and intense heating. The results for the forebody flow field are discussed first, followed by the results for the shock interaction in the inlet leading edge region

    Investigation of hypersonic shock-induced combustion in a hydrogen-air system

    Get PDF
    A numerical study is conducted to simulate the ballistic range experiments at Mach 5.11 and 6.46. The flow field is found to be unsteady with periodic instabilities originating in the stagnation zone. The unsteadiness of the flow field decreased with increase in the Mach number, thus indicating that it is possible to stabilize such flow fields with a high degree of overdrive. The frequency of periodic instability is determined using Fourier power spectrum and is found to be in good agreement with the experimental data. The physics of the instability is explained by the wave interaction models available in the literature

    A Study of Flow Separation in Transonic Flow Using Inviscid and Viscous Computational Fluid Dynamics (CFD) Schemes

    Get PDF
    A comparison of flow separation in transonic flows is made using various computational schemes which solve the Euler and the Navier-Stokes equations of fluid mechanics. The flows examined are computed using several simple two-dimensional configurations including a backward facing step and a bump in a channel. Comparison of the results obtained using shock fitting and flux vector splitting methods are presented and the results obtained using the Euler codes are compared to results on the same configurations using a code which solves the Navier-Stokes equations

    Two and three-dimensional shock-shock interactions on the blunt leading edges of the hypersonic inlets

    Get PDF
    The effect of shock impingement on the blunt leading edges of the top and sidewall compression type inlet of a scramjet engine is studied numerically. The impinging shock is caused by the vehicle forebody. The interaction of this forebody shock with the inlet leading edge shock results in a very complex flowfield containing local regions of high pressure and intense heating. This complex flowfield in calculated by solving the Navier-Stokes equations using a finite volume flux splitting technique due to van Leer. To resolve the finer details of the flow structure as well as to predict the surface heat transfer accurately, adaptive grid technique is used in the analysis. Results of the present numerical study are compared with available experimental results

    Chemoviscosity modeling for thermosetting resins

    Get PDF
    A chemoviscosity model, which describes viscosity rise profiles accurately under various cure cycles, and correlates viscosity data to the changes of physical properties associated with structural transformations of the thermosetting resin system during cure, was established. Work completed on chemoviscosity modeling for thermosetting resins is reported
    corecore