5 research outputs found

    Formation of Active Sites for Oxygen Reduction Reactions by Transformation of Nitrogen Functionalities in Nitrogen-Doped Carbon Nanotubes

    No full text
    Heat treating nitrogen-doped multiwalled carbon nanotubes containing up to six different types of nitrogen functionalities transforms particular nitrogen functionalities into other types which are more catalytically active toward oxygen reduction reactions (ORR). In the first stage, the unstable pyrrolic functionalities transform into pyridinic functionalities followed by an immediate transition into quaternary center and valley nitrogen functionalities. By measuring the electrocatalytic oxidation reduction current for the different samples, we achieve information on the catalytic activity connected to each type of nitrogen functionality. Through this, we conclude that quaternary nitrogen valley sites, N-Q<sub>valley</sub>, are the most active sites for ORR in N-CNTs. The number of electrons transferred in the ORR is determined from ring disk electrode and rotating ring disk electrode measurements. Our measurements indicate that the ORR processes proceed by a direct four-electron pathway for the N-Q<sub>valley</sub> and the pyridinic sites while it proceeds by an indirect two-electron pathway <i>via</i> hydrogen peroxide at the N-Q<sub>center</sub> sites. Our study gives both insights on the mechanism of ORR on different nitrogen functionalities in nitrogen-doped carbon nanostructures and it proposes how to treat samples to maximize the catalytic efficiency of such samples

    Nitrogen Doping Mechanism in Small Diameter Single-Walled Carbon Nanotubes: Impact on Electronic Properties and Growth Selectivity

    No full text
    Nitrogen doping in carbon nanostructures has attracted interest for more than a decade, and recent implementation of such structures in energy conversion systems has boosted the interest even more. Despite numerous studies, the structural conformation and stability of nitrogen functionalities in small diameter single-walled carbon nanotubes (SWNTs), and the impact of these functionalities on the electronic and mechanical properties of the SWNTs, are incomplete. Here we report a detailed study on nitrogen doping in SWNTs with diameters in the range of 0.8–1.0 nm, with well-defined chirality. We show that the introduction of nitrogen in the carbon framework significantly alters the stability of certain tubes, opening for the possibility to selectively grow nitrogen-doped SWNTs with certain chirality and diameter. At low nitrogen concentration, pyridinic functionalities are readily incorporated and the tubular structure is well pertained. At higher concentrations, pyrrolic functionalities are formed, which leads to significant structural deformation of the nanotubes and hence a stop in growth of crystalline SWNTs. Raman spectroscopy is an important tool to understand guest atom doping and electronic charge transfer in SWNTs. By correlating the influence of defined nitrogen functionalities on the electronic properties of SWNTs with different chirality, we make precise interpretation of experimental Raman data. We show that the previous interpretation of the double-resonance G′-peak in many aspects is wrong and instead can be well-correlated to the type of nitrogen doping of SWNTs originating from the p- or n-doping nature of the nitrogen incorporation. Our results are supported by experimental and theoretical data

    Synthesis of Palladium/Helical Carbon Nanofiber Hybrid Nanostructures and Their Application for Hydrogen Peroxide and Glucose Detection

    No full text
    We report on a novel sensing platform for H<sub>2</sub>O<sub>2</sub> and glucose based on immobilization of palladium-helical carbon nanofiber (Pd-HCNF) hybrid nanostructures and glucose oxidase (GOx) with Nafion on a glassy carbon electrode (GCE). HCNFs were synthesized by a chemical vapor deposition process on a C<sub>60</sub>-supported Pd catalyst. Pd-HCNF nanocomposites were prepared by a one-step reduction free method in dimethylformamide (DMF). The prepared materials were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. The Nafion/Pd-HCNF/GCE sensor exhibits excellent electrocatalytic sensitivity toward H<sub>2</sub>O<sub>2</sub> (315 mA M<sup>–1</sup> cm<sup>–2</sup>) as probed by cyclic voltammetry (CV) and chronoamperometry. We show that Pd-HCNF-modified electrodes significantly reduce the overpotential and enhance the electron transfer rate. A linear range from 5.0 μM to 2.1 mM with a detection limit of 3.0 μM (based on the S/N = 3) and good reproducibility were obtained. Furthermore, a sensing platform for glucose was prepared by immobilizing the Pd-HCNFs and glucose oxidase (GOx) with Nafion on a glassy carbon electrode. The resulting biosensor exhibits a good response to glucose with a wide linear range (0.06–6.0 mM) with a detection limit of 0.03 mM and a sensitivity of 13 mA M<sup>–1</sup> cm<sup>–2</sup>. We show that small size and homogeneous distribution of the Pd nanoparticles in combination with good conductivity and large surface area of the HCNFs lead to a H<sub>2</sub>O<sub>2</sub> and glucose sensing platform that performs in the top range of the herein reported sensor platforms

    Simple Dip-Coating Process for the Synthesis of Small Diameter Single-Walled Carbon Nanotubesî—¸Effect of Catalyst Composition and Catalyst Particle Size on Chirality and Diameter

    No full text
    We report on a dip-coating method to prepare catalyst particles (mixture of iron and cobalt) with a controlled diameter distribution on silicon wafer substrates by changing the solution's concentration and withdrawal velocity. The size and distribution of the prepared catalyst particles were analyzed by atomic force microscopy. Carbon nanotubes were grown by chemical vapor deposition on the substrates with the prepared catalyst particles. By decreasing the catalyst particle size to below 10 nm, the growth of carbon nanotubes can be tuned from few-walled carbon nanotubes, with homogeneous diameter, to highly pure single-walled carbon nanotubes. Analysis of the Raman radial breathing modes, using three different Raman excitation wavelengths (488, 633, and 785 nm), showed a relatively broad diameter distribution (0.8–1.4 nm) of single-walled carbon nanotubes with different chiralities. However, by changing the composition of the catalyst particles while maintaining the growth parameters, the chiralities of single-walled carbon nanotubes were reduced to mainly four different types, (12, 1), (12, 0), (8, 5), and (7, 5), accounting for about 70% of all nanotubes

    Thermoelectricity Enhanced Electrocatalysis

    No full text
    We show that thermoelectric materials can function as electrocatalysts and use thermoelectric voltage generated to initiate and boost electrocatalytic reactions. The electrocatalytic activity is promoted by the use of nanostructured thermoelectric materials in a hydrogen evolution reaction (HER) by the thermoelectricity generated from induced temperature gradients. This phenomenon is demonstrated using two-dimensional layered thermoelectric materials Sb<sub>2</sub>Te<sub>3</sub> and Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> where a current density approaching ∼50 mA/cm<sup>2</sup> is produced at zero potential for Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> in the presence of a temperature gradient of 90 °C. In addition, the turnover frequency reaches to 2.7 s<sup>–1</sup> at 100 mV under this condition which was zero in the absence of temperature gradient. This result adds a new dimension to the properties of thermoelectric materials which has not been explored before and can be applied in the field of electrocatalysis and energy generation
    corecore