38 research outputs found

    Caracterización experimental y modelado de bombeo en compresores centrífugos de sobrealimentación

    Full text link
    En la actualidad, los compresores centrífugos son parte fundamental de los motores de combustión interna alternativos sobrealimentados en consecuencia su diseño y optimización son fundamentales para maximizar la capacidad operativa de los compresores en el sistema motor así como también comprender cada uno de los fenómenos que pueden afectar su correcto desempeño en dicho sistema. En los últimos años la gran competencia industrial ha despertado un interés inusitado representado por los estudios e investigaciones referentes al diseño, desempeño y limitaciones de la maquina justificado por el incremento de alguna de las prestaciones del motor como la merma del consumo de combustible, el aumento de potencia o el descenso de emisiones contaminantes. Por medio de la experimentación y la realización de modelos matemáticos además de la experiencia que se va recogiendo de trabajos ya realizados no solo en el campo de los compresores centrífugos sino también de la experiencia adquirida en la industria de la aviación con los axiales sobre todo en términos de limitación y fenómenos de inestabilidad son los caminos seguidos orientados al desarrollo de los nuevos compresores empleados en la automoción. A lo largo de los años, en el Departamento de Máquinas y Motores Térmicos se ha ido desarrollando un modelo de compresor que puede servir como diagnostico a la hora de evaluar la utilidad y desempeño de un compresor centrífugo en un motor sobrealimentado, el cual puede ser modelado en su integridad gracias al robusto modelo de acción de ondas denominado WAM, que ha sido concebido íntegramente en el propio departamento sin embargo un compresor posee limites de funcionamiento que también deben ser tenidos en cuenta como el caso del fenómeno de bombeo, el cual puede romper el compresor y cuyo origen puede depender de varios factores. En el marco de esta tesis doctoral se han realizado varios estudios experimentales que tienen que ver con la evaluación del bombeo, su caracterización, las variables que lo afectan y tal vez lo más importante, la evaluación de distintas metodologías empleadas en la búsqueda rápida de su detección afín de evitar daños en el compresor. Sin embargo como se verá existen varios tipos de bombeo alguno de los cuales pueden no ser dañinos para el compresor o para el sistema en que se halle el compresor. A demás se presenta un nuevo modelo de compresor, posible de colocar en el programa WAM y con el cual se pueden modelar condiciones estables e inestables de trabajo tanto en el motor como fuera de éste, de modo de apreciar cuando un compresor puede sufrir la aparición del fenómeno de bombeo. En esta tesis se presenta un análisis exhaustivo de diferentes modelos que se pueden encontrar en la bibliografía así como el estudio de la dinámica, diseño y problemas de estabilidad del compresor. Sobre el último tema se analiza la influencia que posee la geometría aguas arriba y aguas abajo del compresor respecto de su estabilidad de trabajo y en que circunstancias puede o no ser mejorado el límite impuesto por el fenómeno de bombeo. Por lo tanto en esta tesis se lleva a cabo un estudio modelado y experimental del fenómeno de bombeo evaluado en el banco motor y en el banco de turbos en que se presentan finalmente resultados que permiten mejorar las capacidades de funcionamiento del compresor en cualquier sistema en que se halle funcionando.Tiseira ., AO. (2008). Caracterización experimental y modelado de bombeo en compresores centrífugos de sobrealimentación [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1974Palanci

    Characterization of EGR cooler response for a range of engine conditions

    Full text link
    Fouling phenomenon is a key issue for EGR cooler operation. In spite of the fact that soot deposition is imposed by the characteristics of the exhaust gases flow, the design of the EGR cooler has a significant impact for effect on the engine. New combustion modes corresponding to new engine developments and combination of EGR system with other posttreatment devices make that fouling conditions for future generations of EGR coolers can be significantly different from previous applications from Euro 3 to Euro 5. An investigation has been performed in order to characterize the response of different EGR coolers designs for different conditions of the exhaust gases. As for the design, the technology selected has been tube-and-fin heat exchanger, which is a high performance technology that fits Euro 6 customer specifications. The variations in design have been made through modifications in fin characteristics, both in configuration and geometric dimensions. As for engine operation conditions, the exhaust gases characteristics have been modified from a standard calibration to get more severe fouling conditions, in terms of HC content, opacity, exhaust gas temperature and flow. The degradation of performance has been characterized through measurements of thermal efficiency and permeability. It can be concluded that HC content and opacity have a significant influence on fouling phenomena, and that EGR cooler optimum design is highly dependent on these exhaust gas conditions.Bravo Valeo, Y.; Luján, JM.; Tiseira ., AO. (2013). Characterization of EGR cooler response for a range of engine conditions. SAE International Journal of Engines. 6(1):587-595. doi:10.4271/2013-01-1717S5875956

    In-Cylinder Heat Transfer Model Proposal Compatible with 1D Simulations in Uniflow Scavenged Engines

    Get PDF
    [EN] Advanced two-stroke engines are considered as powertrains for range extenders in hybrid electric vehicles due to size, simplicity, cost, and power density advantages. In-cylinder heat transfer is a phenomenon that affects the temperature of burnt gases and fresh air in an internal combustion engine. Compared to four-stroke units, this influence is more critical in two-stroke engines during the scavenging process since the gases velocity field inside the cylinder evolves rapidly in space and time. This study proposes a new convective heat transfer coefficient model beyond those based on Reynolds number calculation with the mean piston velocity. The model uses semi-empirical equations with non-dimensional numbers since it has to be integrated within the frame of a physical engine model, where thermo- and fluid dynamic properties of the gases inside the engine are solved using 0D or 1D approaches. In this particular application, the temperature deviation led to a poor prediction of trapped mass in the cylinder. The proposed convective heat transfer coefficient is calculated using a pseudo-velocity of the gases inside the cylinder based on the mass flow rates in the intake and exhaust ports during scavenging. The experimental results validate the 1D engine physical model, which is then used as initial conditions for CFD simulations. These CFD results are used to deduce the necessary conclusions for enhanced temperature predictability during scavenging, where deviations of less than 2% can be observed and an impact of up to 12% on the in-cylinder trapped mass can be seen.Climent, H.; Tiseira, A.; Gómez-Soriano, J.; Darbhamalla, A. (2023). In-Cylinder Heat Transfer Model Proposal Compatible with 1D Simulations in Uniflow Scavenged Engines. Applied Sciences. 13(6). https://doi.org/10.3390/app1306399613

    Use of scoring rubrics for evaluating oral presentations in aerospace engineering education

    Full text link
    [EN] Under the frame of Bologna system, alternative assessment methodologies gain significance in the evaluation process of the students. This article analyses the use of scoring rubrics for evaluating oral presentations of two different courses in aerospace engineering education, namelyAircraft Design and Aerodynamics II, at Universitat Politècnica de València. The score obtained at the presentation represents a significant percentage of the final grade for both courses. It has been observed that the students find difficulties to keep timing limitations overall. In addition, rubrics have proved to be a powerful tool to enhance some skills of the students, such as critical thinking and selfevaluation, although they may lead to unfairly high grades nonetheless.Tiseira Izaguirre, AO.; Martí-Aldaraví, P.; Navarro, R.; Carreres, M. (2015). Use of scoring rubrics for evaluating oral presentations in aerospace engineering education. En 1ST INTERNATIONAL CONFERENCE ON HIGHER EDUCATION ADVANCES (HEAD' 15). Editorial Universitat Politècnica de València. 50-56. https://doi.org/10.4995/HEAD15.2015.391OCS505

    Performance Analysis of Piezoelectric Energy Harvesting System.

    Full text link
    [EN] This paper analyzes a piezoelectric system made of a smart lead zirconate material. The system is composed of a monolithic PZT (piezoelectric ceramic) plate made of a ceramic-based piezoelectric material. The experiment was conducted on a test stand with a GUNT HM170 wind tunnel and a special measurement system. The developed bluff-body shape mounted on an elastic beam with a piezoelectric was mounted on a mast with arms. Springs were fixed on the arms to limit the movement of the test object. Air flow velocity in the wind tunnel and forced vibration frequencies were changed during the tests. The recorded parameters were an output voltage signal from the piezoelectric element and linear accelerations at selected points of the test object. The highest energy efficiency of the tested system was specified from mechanical vibrations and air flow. The results of the tests are a resonance curve for the tested system and a correlation of RMS voltage and acceleration as a function of the velocity of air flow for the excitation frequency f ranging from 1 to 6 Hz. The tests specified the area where the highest output voltage under the given excitation conditions is generated.Publication was supported by the program of the Polish Ministry of Science and Higher Education under the project DIALOG 0019/DLG/2019/10 in the years 2019¿2021.Ambrozkiewicz, B.; Czyz, Z.; Staczek, P.; Tiseira, A.; Garcia Tiscar, J. (2022). Performance Analysis of Piezoelectric Energy Harvesting System. Advances in Science and Technology Research Journal. 16:179-185. https://doi.org/10.12913/22998624/1562151791851

    Effect of the inlet geometry on performance, surge margin and noise emission of an automotive turbocharger compressor

    Full text link
    [EN] Centrifugal compressor performance at low mass flow rates has become an issue in the latest years due to engine downsizing and the increase of low-end torque request. The principal drawback of this operating region is the appearance of the surge phenomenon, which is strongly affected by the compressor inlet geometry. This work is addressed to study the impact of different inlet geometries on the compressor performance, including compressor efficiency, noise emission and surge margin. An engine test bench is set up with a centrifugal compressor and both steady and transient (tip-out) tests are performed in order to obtain a complete view of the influence of each configuration. The results show a clear sensitivity of the compressor parameters to the variations of the geometry upstream the compressor inlet. (C) 2016 Elsevier Ltd. All rights reserved.Daniel Tari is partially supported through contract FPI-S2-2015-1095 of Programa de Apoyo para la Investigacion y Desarrollo (PAID) of Universitat Politecnica de Valencia.Galindo, J.; Tiseira, AO.; Navarro, R.; Tarí, D.; Meano, CM. (2017). Effect of the inlet geometry on performance, surge margin and noise emission of an automotive turbocharger compressor. Applied Thermal Engineering. 110:875-882. https://doi.org/10.1016/j.applthermaleng.2016.08.099S87588211

    Design and Numerical Analysis of Flow Characteristics in a Scaled Volute and Vaned Nozzle of Radial Turbocharger Turbines

    Full text link
    [EN] Over the past few decades, the aerodynamic improvements of turbocharger turbines contributed significantly to the overall efficiency augmentation and the advancements in downsizing of internal combustion engines. Due to the compact size of automotive turbochargers, the experimental measurement of the complex internal aerodynamics has been insufficiently studied. Hence, turbine designs mostly rely on the results of numerical simulations and the validation of zero-dimensional parameters as efficiency and reduced mass flow. To push the aerodynamic development even further, a precise validation of three-dimensional flow patterns predicted by applied computational fluid dynamics (CFD) methods is in need. This paper presents the design of an up-scaled volute-stator model, which allows optical experimental measurement techniques. In a preliminary step, numerical results indicate that the enlarged geometry will be representative of the flow patterns and characteristic non-dimensional numbers at defined flow sections of the real size turbine. Limitations due to rotor-stator interactions are highlighted. Measurement sections of interest for available measurement techniques are predefined.The authors disclose receipt of the following financial support for the research, authorship, and/or publication of this article: This work was partly sponsored by the program "Ayuda a Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), Spain". The support given to Ms. N.H.G. by Universitat Politecnica de Valencia through the "FPI-Subprograma 2" (No.FPI-2018-S2-1368) grant within the "Programa de Apoyo para la Investigacion y Desarrollo (PAID-01-18)" is gratefully acknowledgedTiseira, A.; Navarro, R.; Inhestern, LB.; Hervás-Gómez, N. (2020). Design and Numerical Analysis of Flow Characteristics in a Scaled Volute and Vaned Nozzle of Radial Turbocharger Turbines. Energies. 13(11):1-19. https://doi.org/10.3390/en13112930S1191311Praveena, V., & Martin, M. L. J. (2018). A review on various after treatment techniques to reduce NOx emissions in a CI engine. Journal of the Energy Institute, 91(5), 704-720. doi:10.1016/j.joei.2017.05.010Sindhu, R., Amba Prasad Rao, G., & Madhu Murthy, K. (2018). Effective reduction of NOx emissions from diesel engine using split injections. Alexandria Engineering Journal, 57(3), 1379-1392. doi:10.1016/j.aej.2017.06.009Gil, A., Tiseira, A. O., García-Cuevas, L. M., Usaquén, T. R., & Mijotte, G. (2018). Fast three-dimensional heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers. International Journal of Engine Research, 21(8), 1286-1297. doi:10.1177/1468087418804949Suhrmann, J. F., Peitsch, D., Gugau, M., & Heuer, T. (2012). On the Effect of Volute Tongue Design on Radial Turbine Performance. Volume 8: Turbomachinery, Parts A, B, and C. doi:10.1115/gt2012-69525Roumeas, M., & Cros, S. (2012). Aerodynamic Investigation of a Nozzle Clearance Effect on Radial Turbine Performance. Volume 8: Turbomachinery, Parts A, B, and C. doi:10.1115/gt2012-68835Liu, Y., Yang, C., Qi, M., Zhang, H., & Zhao, B. (2014). Shock, Leakage Flow and Wake Interactions in a Radial Turbine With Variable Guide Vanes. Volume 2D: Turbomachinery. doi:10.1115/gt2014-25888Cornolti, L., Onorati, A., Cerri, T., Montenegro, G., & Piscaglia, F. (2013). 1D simulation of a turbocharged Diesel engine with comparison of short and long EGR route solutions. Applied Energy, 111, 1-15. doi:10.1016/j.apenergy.2013.04.016Bohbot, J., Chryssakis, C., & Miche, M. (2006). Simulation of a 4-Cylinder Turbocharged Gasoline Direct Injection Engine Using a Direct Temporal Coupling Between a 1D Simulation Software and a 3D Combustion Code. SAE Technical Paper Series. doi:10.4271/2006-01-3263Inhestern, L. B. (s. f.). Measurement, Simulation, and 1D-Modeling of Turbocharger Radial Turbines at Design and Extreme Off-Design Conditions. doi:10.4995/thesis/10251/119989Tamaki, H., & Unno, M. (2008). Study on Flow Fields in Variable Area Nozzles for Radial Turbines. International Journal of Fluid Machinery and Systems, 1(1), 47-56. doi:10.5293/ijfms.2008.1.1.047Eroglu, H., & Tabakoff, W. (1991). LDV Measurements and Investigation of Flow Field Through Radial Turbine Guide Vanes. Journal of Fluids Engineering, 113(4), 660-667. doi:10.1115/1.2926531Karamanis, N., Martinez-Botas, R. F., & Su, C. C. (2000). Mixed Flow Turbines: Inlet and Exit Flow Under Steady and Pulsating Conditions. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery. doi:10.1115/2000-gt-0470Galindo, J., Tiseira Izaguirre, A. O., García-Cuevas, L. M., & Hervás Gómez, N. (2020). Experimental approach for the analysis of the flow behaviour in the stator of a real centripetal turbine. International Journal of Engine Research, 22(6), 2010-2020. doi:10.1177/1468087420916281Dufour, G., Carbonneau, X., Cazalbou, J.-B., & Chassaing, P. (2006). Practical Use of Similarity and Scaling Laws for Centrifugal Compressor Design. Volume 6: Turbomachinery, Parts A and B. doi:10.1115/gt2006-91227Tancrez, M., Galindo, J., Guardiola, C., Fajardo, P., & Varnier, O. (2011). Turbine adapted maps for turbocharger engine matching. Experimental Thermal and Fluid Science, 35(1), 146-153. doi:10.1016/j.expthermflusci.2010.07.018Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. doi:10.2514/3.12149Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2014). Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors. International Journal of Heat and Fluid Flow, 50, 134-144. doi:10.1016/j.ijheatfluidflow.2014.06.006Smirnov, P. E., Hansen, T., & Menter, F. R. (2007). Numerical Simulation of Turbulent Flows in Centrifugal Compressor Stages With Different Radial Gaps. Volume 6: Turbo Expo 2007, Parts A and B. doi:10.1115/gt2007-27376Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers. Journal of Engineering for Gas Turbines and Power, 137(2). doi:10.1115/1.4028261Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2015). Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes. Energy, 86, 204-218. doi:10.1016/j.energy.2015.03.130Serrano, J. R., Tiseira, A., García-Cuevas, L. M., Inhestern, L. B., & Tartoussi, H. (2017). Radial turbine performance measurement under extreme off-design conditions. Energy, 125, 72-84. doi:10.1016/j.energy.2017.02.118Serrano, J. R., Gil, A., Navarro, R., & Inhestern, L. B. (2017). Extremely Low Mass Flow at High Blade to Jet Speed Ratio in Variable Geometry Radial Turbines and its Influence on the Flow Pattern: A CFD Analysis. Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines. doi:10.1115/gt2017-63368Serrano, J. R., Navarro, R., García-Cuevas, L. M., & Inhestern, L. B. (2019). Contribution to tip leakage loss modeling in radial turbines based on 3D flow analysis and 1D characterization. International Journal of Heat and Fluid Flow, 78, 108423. doi:10.1016/j.ijheatfluidflow.2019.108423Choi, M., Baek, J. H., Chung, H. T., Oh, S. H., & Ko, H. Y. (2008). Effects of the low Reynolds number on the loss characteristics in an axial compressor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(2), 209-218. doi:10.1243/09576509jpe520Klausner, E., & Gampe, U. (2014). Evaluation and Enhancement of a One-Dimensional Performance Analysis Method for Centrifugal Compressors. Volume 2D: Turbomachinery. doi:10.1115/gt2014-25141Tiainen, J., Jaatinen-Värri, A., Grönman, A., Turunen-Saaresti, T., & Backman, J. (2018). Effect of FreeStream Velocity Definition on Boundary Layer Thickness and Losses in Centrifugal Compressors. Journal of Turbomachinery, 140(5). doi:10.1115/1.4038872Vinuesa, R., Hosseini, S. M., Hanifi, A., Henningson, D. S., & Schlatter, P. (2017). Pressure-Gradient Turbulent Boundary Layers Developing Around a Wing Section. Flow, Turbulence and Combustion, 99(3-4), 613-641. doi:10.1007/s10494-017-9840-

    Choking dynamic of highly swirled flow in variable nozzle radial turbines

    Full text link
    [EN] This paper presents the results of a computational investigation of the aerodynamic choking mechanism in a variable geometry turbine, which is widely used in automotive turbocharging. RANS and URANS numerical simulations were carried out for two stator vane positions, 10% and 30% opening at different speeds and several other operating conditions to observe the establishment of choked flow and rotorstator interactions. When the stator vanes are at a closed position and high-pressure ratio, a shock wave is developed on the suction side of the stator vane; moreover, the effective area extends toward the rotor inlet. The shock losses of a fluid particle upstream of the rotor are related to the number of shocks that the particle goes through. The pressure losses are high close to the stator vanes and start to decrease toward the center of the vaneless space until they start to increase close to the rotor. The interaction between the rotor and stator creates shocks waves with an intensity depending on the rotor¿s leading edge position and the rotational speed. The pressure profile of the rotor blade under this circumstance is also affected, especially at high rotational speeds, when important load fluctuations may affect the integrity of the blades.The work has been partially supported by the ¿Subprograma de Formación de Profesorado Universitario (FPU)¿. Ministerio de Universidades. FPU18/02628 and by the ¿FPI Subprograma 2¿. Universitat Politècnica de València. PAID-10-18Tiseira, A.; Dolz, V.; Inhestern, LB.; Echavarria-Olaya, JD. (2022). Choking dynamic of highly swirled flow in variable nozzle radial turbines. Aerospace Science and Technology. 122:1-13. https://doi.org/10.1016/j.ast.2022.10739611312

    Computational Study of the Propeller Position Effects in Wing-Mounted, Distributed Electric Propulsion with Boundary Layer Ingestion in a 25 kg Remotely Piloted Aircraft

    Full text link
    [EN] Distributed electric propulsion and boundary layer ingestion are two attractive technologies to reduce the power consumption of fixed wing aircraft. Through careful distribution of the propulsive system elements, higher aerodynamic and propulsive efficiency can be achieved, as well as a lower risk of total loss of aircraft due to foreign object damage. When used on the wing, further reductions of the bending moment on the wing root can even lead to reductions of its structural weight, thus mitigating the expected increase of operating empty weight due to the extra components needed. While coupling these technologies in fixed-wing aircraft is being actively studied in the big aircraft segment, it is also an interesting approach for increasing the efficiency even for aircraft with maximum take-off masses as low as 25 kg, such as the A3 open subcategory for civil drones from EASA. This paper studies the effect of changing the propellers' position in the aerodynamic performance parameters of a distributed electric propulsion with boundary layer ingestion system in a 25 kg fixed-wing aircraft, as well as in the performance of the propellers. The computational results show the trade-offs between the aerodynamic efficiency and the propeller efficiency when the vertical position is varied.This research was funded by the Agencia Estatal de Investigacion of Spain through grant number PID2020-119468RA-I00/AEI/10.13039/501100011033.Serrano, J.; Tiseira, A.; García-Cuevas González, LM.; Varela-Martínez, P. (2021). Computational Study of the Propeller Position Effects in Wing-Mounted, Distributed Electric Propulsion with Boundary Layer Ingestion in a 25 kg Remotely Piloted Aircraft. Drones. 5(3):1-18. https://doi.org/10.3390/drones5030056S1185

    Numerical Evaluation in a Scaled Rotor-Less Nozzle Vaned Radial Turbine Model under Variable Geometry Conditions

    Full text link
    [EN] The widespread trend of pursuing higher efficiencies in radial turbochargers led to the prompting of this work. A 3D-printed model of the static parts of a radial variable geometry turbine, the vaned nozzle, and the volute, was developed. This model was up-scaled from the actual reference turbine to place sensors and characterize the flow around the nozzle vanes, including the tip gap. In this study, a computational model of the scaled-up turbine was carried out to verify the results in two ways. For this model, firstly compared with an already validated CFD turbine model of the real device (which includes a rotor), its operating range was extended to different nozzle positions, and we checked the issues with rotor-stator interactions as well as the influence of elements such as the screws of the turbine stator. After showing results for different nozzle openings, another purpose of the study was to check the effect of varying the clearance over the tip of the stator vanes on the tip leakage flow since the 3D-printed model has variable gap height configurations.This research work was supported by Grant PDC2021-120821-I00, funded by MCIN/AEI/10.13039/501100011033 and by European Union NextGeneration EI/PRTR.Serrano, J.; Tiseira, A.; López-Carrillo, JA.; Hervás-Gómez, N. (2022). Numerical Evaluation in a Scaled Rotor-Less Nozzle Vaned Radial Turbine Model under Variable Geometry Conditions. Applied Sciences. 12(14):1-17. https://doi.org/10.3390/app12147254117121
    corecore