33 research outputs found
The dopaminergic midbrain participates in human episodic memory formation: Evidence from genetic imaging
Recent data from animal studies raise the possibility that dopaminergic neuromodulation promotes the encoding of novel stimuli. We investigated a possible role for the dopaminergic midbrain in human episodic memory by measuring how polymorphisms in dopamine clearance pathways affect encoding-related brain activity (functional magnetic resonance imaging) in an episodic memory task. In 51 young, healthy adults, successful episodic encoding was associated with activation of the substantia nigra. This midbrain activation was modulated by a functional variable number of tandem repeat (VNTR) polymorphism in the dopamine transporter (DAT1) gene. Despite no differences in memory performance between genotype groups, carriers of the (low expressing) 9-repeat allele of the DAT1 VNTR showed relatively higher midbrain activation when compared with subjects homozygous for the 10-repeat allele, who express DAT1 at higher levels. The catechol-O-methyl transferase (COMT) Val108/158Met polymorphism, which is known to modulate enzyme activity, affected encoding-related activity in the right prefrontal cortex (PFC) and in occipital brain regions but not in the midbrain. Moreover, subjects homozygous for the (low activity) Met allele showed stronger functional coupling between the PFC and the hippocampus during encoding. Our finding that genetic variations in the dopamine clearance pathways affect encoding-related activation patterns in midbrain and PFC provides strong support for a role of dopaminergic neuromodulation in human episodic memory formation. It also supports the hypothesis of anatomically and functionally distinct roles for DAT1 and COMT in dopamine metabolism, with DAT1 modulating rapid, phasic midbrain activity and COMT being particularly involved in prefrontal dopamine clearance
Whole body vibration improves cognition in healthy young adults
This study investigated the acute effects of passive whole body vibration (WBV) on executive functions in healthy young adults. Participants (112 females, 21 males; age: 20.5 +/- 2.2 years) underwent six passive WBV sessions (frequency 30 Hz, amplitude approximately 0.5 mm) and six non-vibration control sessions of two minutes each while sitting on a chair mounted on a vibrating platform. A passive WBV session was alternated with a control session. Directly after each session, performance on the Stroop Color-Block Test (CBT), Stroop Color-Word Interference Test (CWIT), Stroop Difference Score (SDS) and Digit Span Backward task (DSBT) was measured. In half of the passive WBV and control sessions the test order was CBT-CWIT-DSBT, and DSBT-CBT-CWIT in the other half. Passive WBV improved CWIT (p = 0.009; effect size r = 0.20) and SDS (p = 0.034; r = 0.16) performance, but only when the CBT and CWIT preceded the DSBT. CBT and DSBT performance did not change. This study shows that two minutes passive WBV has positive acute effects on attention and inhibition in young adults, notwithstanding their high cognitive functioning which could have hampered improvement. This finding indicates the potential of passive WBV as a cognition-enhancing therapy worth further evaluation, especially in persons unable to perform active forms of exercise
Proteome rearrangements after auditory learning: high-resolution profiling of synapse-enriched protein fractions from mouse brain
Learning and memory processes are accompanied by rearrangements of synaptic protein networks. While various studies have demonstrated the regulation of individual synaptic proteins during these processes, much less is known about the complex regulation of synaptic proteomes. Recently, we reported that auditory discrimination learning in mice is associated with a relative down-regulation of proteins involved in the structural organization of synapses in various brain regions. Aiming at the identification of biological processes and signaling pathways involved in auditory memory formation, here, a label-free quantification approach was utilized to identify regulated synaptic junctional proteins and phosphoproteins in the auditory cortex, frontal cortex, hippocampus, and striatum of mice 24 h after the learning experiment. Twenty proteins, including postsynaptic scaffolds, actin-remodeling proteins, and RNA-binding proteins, were regulated in at least three brain regions pointing to common, cross-regional mechanisms. Most of the detected synaptic proteome changes were, however, restricted to individual brain regions. For example, several members of the Septin family of cytoskeletal proteins were up-regulated only in the hippocampus, while Septin-9 was down-regulated in the hippocampus, the frontal cortex, and the striatum. Meta analyses utilizing several databases were employed to identify underlying cellular functions and biological pathways. Data are available via ProteomeExchange with identifier PXD003089. How does the protein composition of synapses change in different brain areas upon auditory learning? We unravel discrete proteome changes in mouse auditory cortex, frontal cortex, hippocampus, and striatum functionally implicated in the learning process. We identify not only common but also area-specific biological pathways and cellular processes modulated 24 h after training, indicating individual contributions of the regions to memory processing. © 2016 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry