148 research outputs found

    Approximation to Distribution of Product of Random Variables Using Orthogonal Polynomials for Lognormal Density

    Get PDF
    We derive a closed-form expression for the orthogonal polynomials associated with the general lognormal density. The result can be utilized to construct easily computable approximations for probability density function of a product of random variables, when the considered variates are either independent or correlated. As an example, we have calculated the approximative distribution for the product of Nakagami-m variables. Simulations indicate that accuracy of the proposed approximation is good with small cross-correlations under light fading condition.Comment: submitted to IEEE Communications Lette

    Exact and Asymptotic Analysis of Largest Eigenvalue Based Spectrum Sensing

    Get PDF

    Spectrum Sensing in the Presence of Multiple Primary Users

    Full text link
    We consider multi-antenna cooperative spectrum sensing in cognitive radio networks, when there may be multiple primary users. A detector based on the spherical test is analyzed in such a scenario. Based on the moments of the distributions involved, simple and accurate analytical formulae for the key performance metrics of the detector are derived. The false alarm and the detection probabilities, as well as the detection threshold and Receiver Operation Characteristics are available in closed form. Simulations are provided to verify the accuracy of the derived results, and to compare with other detectors in realistic sensing scenarios.Comment: Accepted in IEEE Transactions on Communication

    Non-Orthogonal Contention-Based Access for URLLC Devices with Frequency Diversity

    Get PDF
    We study coded multichannel random access schemes for ultra-reliable low-latency uplink transmissions. We concentrate on non-orthogonal access in the frequency domain, where users transmit over multiple orthogonal subchannels and inter-user collisions limit the available diversity. Two different models for contention-based random access over Rayleigh fading resources are investigated. First, a collision model is considered, in which the packet is replicated onto KK available resources, K′≤KK' \leq K of which are received without collision, and treated as diversity branches by a maximum-ratio combining (MRC) receiver. The resulting diversity degree K′K' depends on the arrival process and coding strategy. In the second model, the slots subject to collisions are also used for MRC, such that the number of diversity branches KK is constant, but the resulting combined signal is affected by multiple access interference. In both models, the performance of random and deterministic repetition coding is compared. The results show that the deterministic coding approach can lead to a significantly superior performance when the arrival rate of the intermittent URLLC transmissions is low.Comment: 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) - Special Session on Signal Processing for NOMA Communication System

    Co-primary inter-operator spectrum sharing over a limited spectrum pool using repeated games

    Full text link
    We consider two small cell operators deployed in the same geographical area, sharing spectrum resources from a common pool. A method is investigated to coordinate the utilization of the spectrum pool without monetary transactions and without revealing operator-specific information to other parties. For this, we construct a protocol based on asking and receiving spectrum usage favors by the operators, and keeping a book of the favors. A spectrum usage favor is exchanged between the operators if one is asking for a permission to use some of the resources from the pool on an exclusive basis, and the other is willing to accept that. As a result, the proposed method does not force an operator to take action. An operator with a high load may take spectrum usage favors from an operator that has few users to serve, and it is likely to return these favors in the future to show a cooperative spirit and maintain reciprocity. We formulate the interactions between the operators as a repeated game and determine rules to decide whether to ask or grant a favor at each stage game. We illustrate that under frequent network load variations, which are expected to be prominent in small cell deployments, both operators can attain higher user rates as compared to the case of no coordination of the resource utilization.Comment: To be published in proceedings of IEEE International Conference on Communications (ICC) at London, Jun. 201
    • …
    corecore