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1. Introduction

1.1 Background

In wireless communications, the channel between transmitter and re-

ceiver operates through electromagnetic radiation. The information-bearing

signals, representing texts, audios, and videos, are mapped into transmit

symbols and modulated onto the carrier frequency. The radio transmis-

sion then originates from the antennas, which convert the symbols in the

form of electric power to the electromagnetic waves. In realistic environ-

ment, the wave propagation may be affected by various obstacles, which

causes different electromagnetic mechanisms, such as reflection, diffrac-

tion, and scattering. The induced channel variations seen by the receiver

can be divided into two types:

• Large-scale fading: includes distance dependent pathloss and shad-

owing due to large obstructions in the main signal path. Large-scale

fading takes place when the mobile equipment moves across the cel-

lular service area, and decorrelation distance is of the order of few

meters.

• Small-scale fading: results from constructive and destructive multi-

path fading, where the received signal is a superimposition of multi-

ple replicas of the original signal each distorted by the corresponding

path. Spatial decorrelation distance for the small-scale fading is of

the order of the wavelength of the carrier frequency.

In modern cellular communications, the large-scale fading can be tackled

relatively easily, e.g. by using slow transmit power control and cell plan-

ning. In this thesis, we focus on the small-scale fading and investigate the

theoretical performance of the multipath fading channels.
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Introduction

In order to characterize the wireless channels, one can resort to solving

the electromagnetic field equations. In typical cellular communication

systems, the operating carrier frequency ranges from 2 GHz to 5 GHz [1,

2], where the corresponding wavelength is only a fraction of a meter. To

calculate the electromagnetic field at the receiver, the location of the re-

ceiver and the structure of the physical environment should be known

within sub-meter accuracy [3]. In realistic environment, the solutions of

electromagnetic equations are therefore too complicated to obtain. To cir-

cumvent this difficulty, a number of multipath models have been proposed

to explain the observed statistical nature of wireless fading channels [4].

These statistical models have been validated through empirical measure-

ments in various scenarios and they serve as universal toolkits to analyze

and design wireless communication systems.

The concept of cascaded fading channel was proposed as an extension on

top of the basic statistical models. It aims to capture the characteristics

of the channel when the signal propagates through a sequence of clusters

(layers) of scatterers until it reaches the destination. As a result, the effec-

tive end-to-end channel becomes a product of component channels, each

corresponding to certain cluster. In literature, the cascaded Single-Input

Single-Output (SISO) Rayleigh channel is shown to model the radio prop-

agation in urban area with moving antennas [5]. In [6,7], authors studied

the shadowing effect caused by multiple cascaded scatterers and the re-

lated physical motivation was given in [8, Sec. 3]. It is also known that the

cascaded scattering channel model is useful when modeling indoor prop-

agation [9, Chap. 13]. For transceiver equipped with multiple antennas,

the cascaded Multi-Input Multi-Output (MIMO) channel, also known as

the Rayleigh product channel, is useful since it captures the performance

degradation due to the channel rank deficiency. This effect occurs in cer-

tain environments, where propagation is subject to the structural limits

of fading channels caused by either insufficient scattering [10, 11] or the

so-called keyhole effect [12]. As a result, the end-to-end MIMO channel

becomes a product of channel matrices [13].

By assuming a single scatterer in each cluster, the statistics of cascaded

SISO Rayleigh channels becomes comparable with a lognormal distribu-

tion as shown in [7], where the rate of convergence is quantified via nu-

merical simulations as the number of component channels increases. Re-

cently, the performance analysis have been also carried out for the cas-

caded Rayleigh [14], Nakagami-m [15] and Weibull channels [16] with

2



Introduction

statistically independent fading components. In [14–16], the statistics of

the product of Random Variables (RVs) were derived in terms of Meijer’s

G-functions. Furthermore, in [17] the Probability Density Function (PDF)

of a product of independent Nakagami-m RVs was expressed as an infinite

series by using the Mellin transform. By exploiting the properties of the

Mellin transform, approximations for the statistics of products of inde-

pendent Gamma, Nakagami-m and Gaussian RVs were proposed in [18].

When multiple antennas are used at the transceivers and arbitrary

number of scatterers is assumed in each cluster, the performance of the

cascaded MIMO channel depends on the eigenvalues of the channel ma-

trix. In literature, the corresponding eigenvalue statistics is only known

in some special cases. For the single-cluster MIMO channel, the upper

bound for the ergodic capacity was derived in [12] and the exact expres-

sion was obtained in [19]. A fundamental tradeoff between the channel

multiplexing gain and the diversity gain was characterized in [20]. Au-

thors in [21, 22] investigated the asymptotic outage probability of the

single-cluster MIMO channels assuming two of matrix dimensions ap-

proach infinity while the other fixed. Furthermore, in case all matrix di-

mensions are large, the ergodic capacity has been obtained in [11] via nu-

merical integration. With the assumptions of [11], an asymptotic expres-

sion for the ergodic capacity was derived in [23]. In the case of two-cluster

MIMO channel, the ergodic capacity was deduced in [24]. Using free prob-

ability theory, the asymptotic eigenvalue distribution was derived in [13]

for the cascaded MIMO channel with arbitrary number of clusters.

1.2 Scope and objective

In this thesis, performance analysis for a wireless communication system

is considered in the presence of cascaded fading channel. Essentially, the

adopted multiple cluster scattering model assumes that the radio wave

goes through all clusters in sequence and is bounced off from each scatter-

ing object exactly once. This assumption is valid when there is no line-of-

sight between transmitter and receiver or between non-consecutive clus-

ters. Such channel model has been also adopted in [11] and confirmed

by measurement campaigns in [25, 26]. In addition, it is assumed that

the receiver can track the channel and has full Channel State Informa-

tion (CSI), while the transmitter has no CSI. Under these assumptions,

we divide the considered cascaded fading channels into two main cate-

3
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gories:

• In the first category, transceivers are equipped with a single antenna

and there is one scattering object at each cluster. For ergodic chan-

nels, we investigate the average Signal-to-Noise Ratio (SNR) per-

ceived by the receiver in presence of cascaded correlated Nakagami-m

fading with arbitrary number of clusters. For non-ergodic channels,

the outage probability is calculated. Moreover, we consider a cas-

caded Rician channel formed by retransmitting the backscattered

signal from a point target embedded in multipath scatterings, also

known as the time-reversal detection. We formulate the target de-

tection problem as a binary hypothesis test and propose a new de-

tection algorithm using the statistical distribution of the cascaded

Rician channel.

• In the second category, transceivers are equipped with multiple an-

tennas and there are multiple scattering objects in each cluster. The

information theoretical limits, such as ergodic Mutual Information (MI)

and outage probability, are obtained for ergodic and non-ergodic cas-

caded Rayleigh MIMO channels, respectively. By assuming that the

number of scattering objects is equal to the number of antennas,

the non-asymptotic lower bound for ergodic MI as well as the rate

scaling law are obtained. With channel dimensions growing to in-

finity at fixed rate, the asymptotic outage probability is calculated

for single-cluster MIMO channels. Using this result, a fundamental

tradeoff between diversity and multiplexing gain is characterized at

finite SNR level.

1.3 Contributions and summary of publications

This thesis consists of an introductory part and seven original publica-

tions. The content of each publication is summarized as follows.

In Publication I we derive a closed-form expression for the orthogonal

polynomials with respect to the lognormal density. The obtained orthog-

onal polynomial is valid for a family of lognormal density functions and

deemed as a more general result compared to the existing ones in litera-

ture. Using this result, an approximation for the distribution of product

of RVs is derived using a moment based framework. For the product of

correlated Nakagami-m RVs, numerical results show that the proposed

4
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approximation is accurate when RVs are independent or weakly corre-

lated.

In Publication II we utilize the results of Publication I to approximate

the SNR distribution for the cascaded Nakagami-m channels with general

correlation structure. We have also computed the exact average received

SNR of the considered channel model.

In Publication III we consider blind time-reversal detection of a point

target in the presence of correlated multipath scattering. The target de-

tection is formulated as a binary hypothesis test, where the test statistics

depends on the distribution of correlated Rician channels. To address this

issue, we derive the exact characteristic function for the product of non-

central correlated complex Gaussian RVs and obtain the exact PDF when

target is absent. When target is present, the PDF is shown to be asymp-

totically Gaussian as the means of Rician RVs go to infinity and can be

approximated by the bivariate Edgeworth expansion. Simulation results

show that the proposed detector outperforms the existing time-reversal

detector in the presence of channel correlation.

In Publication IV we consider the cascaded MIMO channels with inde-

pendent Rayleigh fading. Assuming equal number of antennas and scat-

tering objects in each cluster, the lower bound of ergodic MI is derived

by using a recent result for the eigenvalue distribution of product of com-

plex Gaussian matrices. As the received SNR grows to infinity, a sim-

pler expression is obtained representing the rate scaling law in the large

SNR regime. This result generalizes the rate scaling law for conventional

Rayleigh MIMO channels.

In Publication V we consider a single-cluster MIMO channel and derive

the asymptotic variance of MI when the channel dimensions grow to in-

finity. As the number of antennas is equal at transmitter and receiver, we

obtain an explicit expression, which can be used to compute an accurate

approximation for the variance of MI over a wide range of SNRs and chan-

nel dimensions. The MI of the cascaded MIMO channel is conjectured as

a Gaussian RV and the claim is validated via numerical simulations.

In Publication VI we consider the same MIMO model as in Publication V

and provide a detailed proof for the asymptotic variance of the channel

MI. Compared to the conventional Rayleigh MIMO channel, the increased

fluctuation of MI is understood via the free probability theory. In case of

large matrix dimensions, the covariance function for the eigenvalues of

product matrices depends on the known free moments and the unknown

5
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free cumulants. The latter is identified to be equivalent to the problem of

counting the number of non-crossing permutations on the annulus.

In Publication VI and VII, we show that the MI of the single-cluster

MIMO channel behaves asymptotically as a Gaussian RV by establishing

a Central Limit Theorem (CLT) for the linear spectral statistics of ma-

trix ensembles. Using this result, the asymptotic outage probability can

be evaluated as the channel dimensions grow to infinity. This enables a

simple approximation for the fundamental tradeoff between the channel

diversity gain and the multiplexing gain. Numerical results show that

the previously known tradeoff obtained at infinite SNR significantly over-

estimates diversity gain at realistic SNRs.

6



2. Cascaded SISO Channels

In this chapter, we consider the wireless link with single antenna at trans-

mitter and receiver. The transmitted symbol x is conveyed from the trans-

mitter to the receiver via n clusters in sequence, where each cluster con-

tains one scattering object. The received symbol is then represented as

y =
n∏

i=1

Hix+ z, (2.1)

where Hi denotes the channel between (i − 1)-th and i-th clusters, and

z refers to the complex Gaussian noise. To understand the performance

of the equivalent end-to-end channel
∏n

i=1Hi, we recall in Section 2.1 the

existing moment-based approximations for the distribution of the channel

statistics. The approximated distributions of channel amplitudes and the

exact moments are then used to investigate the following systems:

• First, a cascaded Nakagami-m fading channel with arbitrary num-

ber of clusters is investigated in Section 2.2. The exact average end-

to-end SNR and approximative outage probability are deduced.

• Second, a blind time-reversal detection is studied in Section 2.3 in

the presence of a point target embedded in correlated multipath

scattering. The likelihood ratio of the corresponding binary hypoth-

esis is calculated by using the complex amplitude distribution of the

time-reversed signal.

2.1 Moment-based approximation

2.1.1 Background

There are many cases where the moments of a distribution can be easily

obtained, while the exact form of the distribution is intractable. In such

7
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situations, it is convenient to utilize the moment-based approximation

to estimate the unknown distribution function. Consider a RV U with

unknown PDF fU (x). The moment-based approximations embrace the set

of techniques to construct closed-form approximations for fU (x) using the

moments of U , denoted as

MU (k) =

ˆ b

a
xkfU (x)dx, k ∈ N, (2.2)

where the interval [a, b] is the support of PDF fU (x). For example, the

approximation that uses the family of Pearson curves, as discussed in [27],

utilizes up to the fourth moment of U .

Although the Pearson curves can be used to generate many simple dis-

tribution functions, they may induce non-trivial approximation error in

cases where higher order moments are needed. To address this issue, the

Gram-Charlier series has been proposed, see e.g. [28], where the target

PDF fU (x) is expressed in terms of derivatives of a certain weight func-

tion w(x), which is selected as an initial approximation to fU (x). Namely,

fU (x) ≈
s∑

j=0

cjw
(j)(x). (2.3)

Applying the construction (2.3), the Gram-Charlier series can be used to

match the first s moments with fU (x) [29]. The support of w(x) should fit

with the support of RV U , being infinite, semi-infinite, or compact set on

the real axis [30]. In particular, the weight function w(x) can be Gaussian,

Gamma, or Beta distribution, and the corresponding derivatives w(j)(x)

have explicit expressions in terms of Hermite, Laguerre, and Jacobi or-

thogonal polynomials [31]. When the RV U is a normalized sum of n i.i.d.

RVs, the summation (2.3), reordered in the decreasing powers of
√
n, is

known as the Edgeworth expansion with Gaussian density as the weight

function [32]. As n→ ∞, the expansion (2.3) becomes asymptotic approx-

imation for the PDF fU (x) and the approximation error can be estimated.

If the Gaussian, Gamma, and Beta distributions fail to serve as an

initial approximation, other types of weight functions are needed. The

Gram-Charlier series (2.3) then requires to evaluate the derivativesw(j)(x),

where results are usually given in recursive formulas without explicit ex-

pression. To avoid this problem, authors in [33] proposed a generalized

orthogonal polynomial expansion given by the product of a general weight

function and non-classical orthogonal polynomials.

8
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2.1.2 Generalized orthogonal polynomial expansion

Let w(x) be a proper probability density function defined on the interval

[a, b], i.e. w(x) ≥ 0 for a ≤ x ≤ b and
´ b
a w(x)dx = 1. We say that the n-th

degree polynomial

πn(x) =
n∑

k=0

cn,kx
k (2.4)

with cn,n �= 0 is orthogonal with respect to the weight function w(x) if

ˆ b

a
πj(x)πk(x)w(x)dx =

⎧⎨⎩ hj j = k

0 j �= k
j, k ∈ N, (2.5)

where hj is the orthogonality factor. We denote by νi, i ∈ N, the i-th

integer moment of w(x) with νi =
´ b
a x

iw(x)dx. If the moment sequence

{νi}i∈N exists, the orthogonal polynomial πn(x) is monic (cn,n = 1) and

uniquely expressed by the determinant representation [34, Eq. (2.2.6)] as

πn(x) =
1

Δn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ν0 ν1 · · · νn−1 νn

ν1 ν2 · · · νn νn+1

...
... . . . ...

...

νn−1 νn · · · ν2n−2 ν2n−1

1 x · · · xn−1 xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.6)

where Δn = |νi+j |i,j=0,··· ,n−1 refers to the determinant of an n × n matrix

with entry νi+j on the (i + 1)-th row and (j + 1)-th column, and Δ0 =

1. If w(x) is properly chosen and serves as the initial approximation to

the target PDF fU (x), the generalized orthogonal polynomial expansion is

given by [33, Eq. (7)] such that

fU (x) ≈ fs(x) = w(x)
s∑

i=0

ηiπi(x). (2.7)

Here, the coefficient ηi is explicitly determined by the linear equations
ˆ b

a
πi(x)fU (x)dx =

ˆ b

a
πi(x)fs(x)dx, i = 0, . . . , s, (2.8)

which equate the first s moments of fU (x) with fs(x).

Due to the orthogonality of the polynomials {πi(x)}, the addition of the

k-th term w(x)ηkπk(x) to the (k − 1)-th order approximation fk−1(x) in

(2.7) does not affect the calculation of the first k coefficients {ηi}0≤i≤k−1.

Therefore, the orders of approximation can be found iteratively: evaluate

the maximum relative improvement of the k-th order approximation τ =

max
x∈[a,b]

‖w(x)ηkπk(x)/fk−1(x)‖. If τ is less than a pre-defined threshold τTH,

9
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use fk(x) as the approximation for fU (x), otherwise compute the (k+1)-th

term until τ < τTH or the number of terms in approximation exceeds the

maximum order smax.

2.1.3 Bivariate Edgeworth expansion

Consider a two-dimensional real random vector U = [U1, U2] with an un-

known joint PDF fU(u). If U is approximately Gaussian, the Edgeworth

expansion [35] will be useful when calculating an approximation of the

PDF fU(u). Without loss of generosity, we assume that U has zero mean

and covariance matrix R. The characteristic function of U is defined as

ψU(t) = E
[
eı〈t,U〉], where t = [t1, t2] is a two-dimensional real vector and

〈·, ·〉 refers to the inner product of vectors. Consider the cumulant gener-

ating function log
(
ψU(t)

)
expanded around t = [0, 0] such that

log (ψU(t)) = −1

2
〈t,Rt〉+

s∑
r=1

χr+2(ı t) +O(‖t‖s). (2.9)

The bivariate polynomial χs(·) is expressed by [35, Eq. (7.1)] as

χs(t) =
∑

κ1+κ2=s

χ[κ1,κ2]

κ1!κ2!
tκ1
1 t

κ2
2 , (2.10)

where χ[κ1,κ2] refers to the mixed cumulant of RVs U1 and U2 and the

summation is taken over κ1+κ2 = swith κ1, κ2 ∈ N. By using the mapping

between cumulants and moments of multivariate distribution [36], χ[κ1,κ2]

can be calculated as a linear combination of the mixed moments E

[
U i
1U

j
2

]
,

0 ≤ i ≤ κ1, 0 ≤ j ≤ κ2. Taking the exponential on both sides of (2.9)

and expanding around t = [0, 0], an approximation for the characteristic

function ψU(·) was obtained in [37] as

ψU(t) ≈ ψs(t) = exp

(
−1

2
〈t,Rt〉

)[
1 +

s−2∑
r=1

P̃r (ı t; {χκ1,κ2})
]
, (2.11)

where P̃r (ı t; {χκ1,κ2}) refers to the bivariate Cramér Edgeworth polyno-

mial in ı t depending on χ3, . . . , χr+2. An explicit formula of P̃r can be

found in [35, Eq. (7.3)]. By the inverse transform of (2.11), the Edgeworth

approximation for the PDF fU(u) is given as

fU(u) ≈ fs(u) =
1

2π

ˆ
ψs(t) exp (−ı〈t,u〉) dt, (2.12)

where u = [u1, u2] and dt = dt1dt2. Using the properties of Fourier trans-

form, the integral in (2.12) can be explicitly expressed as

fs(u) = φ0,R(u) +

s−2∑
r=1

Pr

(
φ0,R(u); {χ[κ1,κ2]}

)
, (2.13)

10
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where φ0,R denotes a bivariate Gaussian density function with zero mean

and covariance matrix R. According to [35, Lemma 7.2], Pr is formed by

substituting each tκ1
1 t

κ2
2 in expression of P̃r with H(u; [κ1, κ2],R

−1)φ0,R(u)

where H is the bivariate Hermite polynomial [38].

2.2 Cascaded Nakagami-m channels

2.2.1 Signal model

Consider a cascaded Nakagami-m communication channel (2.1) with com-

plex Gaussian noise z ∼ CN (0, σ2z) and component channel Hi = aie
ıφi ,

i = 1, . . . , n. Here, amplitudes {ai}1≤i≤n are jointly Nakagami-m dis-

tributed with the PDF given by [39] as

f(a1, a2, · · · , an) =
ˆ ∞

0

tm−1

Γ(m)
exp(−t)

n∏
i=1

1

(β2i ρ
2
i t)

m−1
2

ami
ω2
i

× exp

(
−a

2
i + β2i ρ

2
i t

2ω2
i

)
Im−1

⎛⎝ai
√
β2i ρ

2
i t

ω2
i

⎞⎠ dt, (2.14)

where β2i = Ωi/m, ω2
i = β2i

(
1− ρ2i

)
/2 and Im−1(·) refers to the modified

Bessel function of the first kind [40, Eq. (8.406)]. The parameter m ≥ 1/2

represents the severity of fading and takes integer or half-integer values

in (2.14). The power of the component channel Hi is denoted by E[a2i ] = Ωi

and the cross-correlation between a2i and a2j is of the form

ρi,j =
E[a2i a

2
j ]− E[a2i ]E[a

2
j ]√

Var[a2i ]Var[a2j ]
= ρ2i ρ

2
j , (2.15)

where −1 ≤ ρi, ρj ≤ 1. We denote by P the end-to-end amplitude of the

cascaded channel, i.e.

P =
n∏

i=1

ai. (2.16)

Then the instantaneous SNR of the cascaded channel (2.1) reads

γ =
Es

σ2z
P 2, (2.17)

where Es = E[‖x‖2] refers to the average energy of the transmitted sym-

bol.

2.2.2 Product of Nakagami-m random variables

Using the orthogonal polynomial expansion described in Section 2.1.2, the

distribution of the product of amplitudes P in (2.16) can be obtained. In

11
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light of the CLT for product of RVs, the lognormal density fLN(x) is chosen

as the weight function w(x) in the expansion (2.7),

fLN(x) =
1

x
√

2πσ2w
exp

(
−(log x− μw)

2

2σ2w

)
, x ∈ (0,∞). (2.18)

In Publication I, the orthogonal polynomial πn(x) =
∑n

k=0 cn,kx
k with re-

spect to the lognormal density fLN(x) was derived. The resulting polyno-

mial coefficients cn,k are given by

cn,k = (−1)n+ke(n−k)μwq(n−1/2)(n−k)

[
n

k

]
q

, (2.19)

where q = eσ
2
w and the generalized binomial coefficient is of the form[

n

k

]
q

=
(1− qn)(1− qn−1) · · · (1− qn−k+1)

(1− qk)(1− qk−1) · · · (1− q)
. (2.20)

With w(x) = fLN(x), the coefficient ηi in (2.7) is obtained by solving the

linear system (2.8) as

ηi =
1

hi

i∑
k=0

ci,kMP (k), (2.21)

where MP (k) = E
[
P k
]

is the k-th moment of the end-to-end channel am-

plitude P . Using the joint PDF (2.14), MP (k) can be calculated by inte-

grating P k = (
∏n

i=1 ai)
k over the measure f(a1, . . . , an)da1 . . . dan. The pa-

rameters μw and σ2w of the lognormal density fLN(x) are set equal with the

mean and variance of log(P ), respectively. Detailed derivations of MP (k),

μw, and σ2w are given in Publication II.

By rearranging the terms of the expansion (2.7), the approximation fs(x)

can be rewritten as a product of the lognormal density fLN(x) and a poly-

nomial
∑s

i=0�ix
i, where �j =

∑s
k=j ck,jηk. After direct integration, the

approximation for the Cumulative Distribution Function (CDF) of P at-

tains the form

Fs(x) =
s∑

i=0

�iνiΦ0,1

(
log(x)− μw

σw
− iσw

)
, (2.22)

where νi = exp
(
iμw + i2σ2w/2

)
is the i-th moment of fLN(x), Φ0,1(x) =

(
1 +

erf(x/
√
2)
)
/2 is the CDF of a standard Gaussian RV, and erf(·) refers to

the error function.

2.2.3 Numerical results

Let us evaluate numerically the average end-to-end SNR and the SNR

distribution for the cascaded Nakagami-m channel. First, we consider

the average SNR γ̄ = E[γ] such that

γ̄ =
Es

σ2z
E
[
P 2
]
=
Es

σ2z
MP (2). (2.23)
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Figure 2.1. Average end-to-end SNR of cascaded Nakagami-m channel as a function of
the number of component channels n with Ω = 0.5. Dotted line: ρ = 0; solid
line: ρ = 0.1; dashed line: ρ = 0.3.

In Fig. 2.1, γ̄ is plotted as a function of the number of component chan-

nels n, for ρi = ρ = 0 (independent), 0.1 and 0.3, i = 1 . . . , n. The same

power Ω = Ωi = 0.5 is used for all component channels and the constant

Es/σ
2
z is set to be 1. From Fig. 2.1, we find that the average SNR is larger

in the presence of channel correlation compared with the independent

case. Furthermore, as the number of channels increases, the amount of

improvement in average SNR also increases, especially when m = 1. The

obtained results also indicate that with certain parameter combinations

(e.g. m = 1, n = 6, and ρ = 0.3), the cascaded fading channels achieve

better average SNRs than a single Nakagami-m channel (n = 1).

Next, we consider the outage probability Pout(x) of the cascaded channel

defined as the probability that the instantaneous SNR γ falls below a

given threshold x. By utilizing the CDF of the end-to-end amplitude P

in (2.22), Pout(x) can be obtained as

Pout(x) ≈ Fs

⎛⎝√σ2z
Es
x

⎞⎠ . (2.24)

In Fig. 2.2, the outage probabilities of the cascaded Nakagami-m channel

are plotted as a function of the end-to-end SNR. The component channels

are assumed to be identically distributed with parameters m = 4, Ω = 0.8

and equal cross-correlation with values ρ = 0.1 and 0.3. The approxima-
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Figure 2.2. Outage probability as a function of the SNR for cascaded Nakagami-m chan-
nels with m = 4 and Ω = 0.8. Solid line: ρ = 0.1; dashed line: ρ = 0.3.
Simulated values are denoted by markers.

tive outage probability (2.24) is evaluated for 3 and 5 clusters of cascaded

channels, and numerical simulations are used to validate approximations.

2.3 Cascaded Rician channels and blind time-reversal detection

In this section, we consider a cascaded channel with two Rician fading

components. This channel is useful when modeling the so-called Time-

Reversal (TR) transmission in the electromagnetic field. The TR tech-

nique utilizes channel reciprocity and obtains the channel state informa-

tion by sending a probing signal. The backscattered signal is then time-

reversed and retransmitted. The TR signal is shown to be optimal in the

sense that the transmission system realizes a matched filter to the propa-

gation transfer function [41]. In [42–45], authors have introduced the TR

detection in the wireless multipath environment.

2.3.1 Time-reversal detection

We consider the blind detection of a point target embedded in the multi-

path scattering similarly as in [45]. The detection system sends Q prob-

ing signals at the frequencies fq, q ∈ [1, Q]. The sampling frequencies are
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chosen such that the frequency bins are separated by the channel coher-

ence bandwidth and the spectral samples are statistically independent.

The multipath channel induced by the scattering is modeled as a wide

sense stationary process. We denote by Cp(q) and Cr(q) the channels ex-

perienced by the probing signal and the retransmission at frequency fq,

respectively. The point target to be detected is modeled as a deterministic

response T and the probing signal at fq is denoted as x(q).

After transmitting the probing signal x(q), the backscattered signal is

given by [45, Eq. (36)] as

y(q) =
(
T + Cp(q)

)
x(q) + zp(q), q = 1, . . . , Q,

where zp(q) is the measurement noise distributed as a zero-mean complex

Gaussian RV, i.e. zp(q) ∼ CN (0, σ2z). In the following, we assume that the

total transmit power Es is equally allocated to the Q samples, such that

x(q) =
√
Es/Q. The received signal y(q) is then time-reversed or, equiva-

lently, phase-conjugated in the frequency domain and scaled to obtain the

TR signal:

xTR(q) = ky(q)†, (2.25)

where k is a constant energy normalization. The TR signal xTR(q) is sub-

sequently transmitted and the response of the retransmission is given by

yTR(q) =
(
T + Cr(q)

)
xTR(q) + zr(q)

= H2(q)H1(q) + zr(q), (2.26)

where H2(q) = T + Cr(q), H1(q) = xTR(q) and zr(q) ∼ CN (0, σ2z) is the

measurement noise of the retransmission.

In blind TR detection, the channels Cp(q) and Cr(q) will not be estimated

by the detector and are known only through their statistical distributions.

We assume that Cp(q) and Cr(q) admit a bivariate zero-mean complex

Gaussian distribution with a common Power Spectral Density (PSD) Pc(q)

and correlation coefficient ρc(q). The measurement noises zp(q) and zr(q)

are independent of each other and independent of the multipath channels.

Therefore, the model (2.26) resembles a cascaded Rician channel with two

fading components such that

H1(q) ∼ CN
(
k T ∗√Es/Q, k

2
(
Pc(q)Es/Q+ σ2z

))
, (2.27)

H2(q) ∼ CN
(
T, Pc(q)

)
. (2.28)

By definition, H1(q) and H2(q) are jointly complex Gaussian distributed
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with a correlation coefficient calculated as

ρ(q) =
E[(H1(q)− μ1)(H2(q)− μ2)

∗]
σ1σ2

=
ρc(q)

∗√
1 + σ2zQ/Pc(q)Es

, (2.29)

where μi and σi, i ∈ {1, 2}, refer to the mean and variance of the RV Hi(q).

If we ignore the noise term zr(q) in (2.26), yTR(q) is a product of two

non-central complex Gaussian RVs, hereafter denoted by

P (q) = H2(q)H1(q). (2.30)

Using P (q), we set up a binary hypothesis test, related to the presence or

absence of the deterministic point target T . In the null hypothesis H0, the

target is not present and T = 0; in the alternative hypothesis H1, ‖T‖ > 0.

Thus,

H0 : μ1 = 0, μ2 = 0

H1 : μ1 = T, μ2 = k T ∗√Es/Q. (2.31)

The PDF of P (q) in the complex plane is denoted as fP (q)(p1, p2;T ), where

p1 = Re
(
P (q)

)
and p2 = Im

(
P (q)

)
are real and imaginary parts of P (q).

The Likelihood Ratio Test (LRT) of the blind TR detection (2.31) is con-

structed as

l =

Q∏
q=1

fP (q)(p1, p2;T )

fP (q)(p1, p2; 0)

H1

≷
H0

l0, (2.32)

with l0 being a decision threshold.

2.3.2 Product of non-central complex Gaussian random
variables

Let us present the results for the exact expression of the PDF fP (q)(p1, p2; 0)

obtained from the characteristic function of P (q) and an approximative ex-

pression of fP (q)(p1, p2;T ) while applying the bivariate Edgeworth expan-

sion described in Section 2.1.3. The frequency index q is omitted hereafter

whenever it is clear from the context.

Under the null hypothesis H0, the PDF of TR signal P is derived in Pub-

lication III as

fP (p1, p2; 0) =
2

πσ1σ2c
exp

{
2Re[ρ∗p]

c

}
K0

(
2‖p‖
c

)
, (2.33)

where p = p1 + ıp2, c = σ1σ2(1 − ‖ρ‖2), and K0(x) is the modified Bessel

function of the second kind [40, eq. (8.432/6)]. The PDF (2.33) is obtained

by applying the inverse Fourier transform of the characteristic function
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ψP (t) of the complex RV P . With non-zero μ1 and μ2, the characteristic

function ψP (t) = E[exp(ıRe[t∗P ])] is calculated in Publication III as

ψP (t) =
1

G(t)
exp

(
−‖μ1‖2σ22 + ‖μ2‖2σ21

4G(t)
‖t‖2

+
σ1σ2Re[μ1

∗μ2ρ]
2G(t)

‖t‖2 + ıRe[μ1
∗μ2t]

G(t)

)
, (2.34)

where G(t) = 1 + σ21σ
2
2(1− ‖ρ‖2)‖t‖2/4− ıσ1σ2Re[t

∗ρ].

Let μP = μ1μ2
∗ + ρσ1σ2 and σ2P = ‖μ1‖2σ22 + ‖μ2‖2σ21 + σ21σ

2
2. Then the

characteristic function of (P − μP )/σP reads

exp

(
−ıRe [μP t

∗]
σP

)
ψP

(
t

σP

)
. (2.35)

By letting ‖μ1/σ1‖ and ‖μ2/σ2‖ go to infinity, (2.35) reduces to exp(−‖t‖2/4),
which is the characteristic function of the standard complex Gaussian RV.

Thus, the RV P is approximately complex Gaussian with mean μP and

variance σ2P . Using the bivariate Edgeworth expansion (2.13), an approxi-

mative PDF fP (p1, p2;T ) under alternative hypothesis H1 can be obtained.

The exact moments of P , which are needed in approximation (2.13), are

computed in Publication III.

2.3.3 Numerical results

We consider a scenario where the point target has a constant response

T = eıπ/4 and the multipath channels are of equal PSD, Pc(q) = Pc, and

equal channel correlation, ρc(q) = ρc, over the frequency bands {fq}1≤q≤Q.

This assumption can be justified using Jakes’ fading model with high-

frequency samples. The Signal-to-Scatterer Ratio (SSR) and SNR are de-

fined as SSR = 10 log10
(
‖T‖2/Pc

)
and SNR = 10 log10

(
Es‖T‖2/(Qσ2z)

)
with

Es = 1. The performance of the proposed LRT detector (2.32) under chan-

nel correlation, denoted as LRT-C, is evaluated with randomly selected

correlation coefficients ρc = 0.1 + 0.4ı and ρc = 0.1 + 0.7ı, representing

weakly correlated and strongly correlated channels. In addition, we con-

sider the case where the target has a relatively strong channel response

(SSR = 5 dB, SNR = 5 dB) with sample size Q = 5, denoted by the square

markers in Fig. 2.3, and relatively weak target response (SSR = 0 dB,

SNR = 0 dB) with Q = 20, denoted by the circle markers.

Fig. 2.3 shows results from Monte Carlo simulations for the Receiver

Operating Characteristic (ROC), where the detection probability (Pd) is

plotted as a function of the false alarm probability (Pfa). The ROC of the

proposed LRT-C detector is evaluated by test (2.32). For comparison pur-

poses, we have also computed the ROCs of the LRT detector designed for
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Figure 2.3. Receiver operating characteristic for the proposed LRT-C (2.32) and LRT-I
of [45] for relatively strong target signal (SSR = 5 dB, SNR = 5 dB) with
sample size Q = 5, denoted by ′�′; and relatively weak target signal (SSR =

0 dB, SNR = 0 dB) with sample size Q = 20, denoted by ′©′. (a) ρc = 0.1+0.4ı

and (b) ρc = 0.1 + 0.7ı.

independent TR channels (LRT-I) [45]. From Fig. 2.3 we observe that the

proposed LRT-C detector outperforms the existing LRT-I by a substantial

margin when the target is relatively strong. These results are expected,

since the LRT-C detector utilizes the channel correlation, which increases

the extent of coherence between the TR signal and the multipath channel.

As ρc increases to 0.1+ 0.7ı, the blind TR detection approaches a coherent

detection, and the proposed LRT-C detector attains improved detection

probability at a fixed false alarm probability by capturing the channel

correlation. When the target response is weak and channel correlation

is small, the performance of LRT-C becomes worse than the performance

of LRT-I. This observation is consistent with the Neyman-Pearson theo-

rem [46], as fP (p1, p2;T ) is dominantly affected by the singularity point

at origin under the condition of a weak target and small channel correla-

tion. In this case, the approximation error of (2.13) leads to a non-trivial

deviation from the optimal detector.
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3. Cascaded MIMO Rayleigh Channels

The cascaded SISO channel model discussed in Chapter 2 can be nat-

urally extended to MIMO channel by assuming multiple antennas and

multiple scattering objects in each cluster. If amplitudes of all compo-

nent MIMO channels are following Rayleigh fading, this model is known

as the Rayleigh product channel in literature (as in [20], [47], and [48],

among others). The information theoretical quantities of MIMO chan-

nel, such as ergodic mutual information and outage probability, depend

on the statistics of eigenvalues of related channel matrices. In the fol-

lowing discussion, we first present the system model and physical moti-

vation for the Rayleigh product channels in Section 3.1. In Section 3.2,

the MIMO mutual information is formulated as the linear spectral statis-

tics of the Rayleigh product ensembles and key mathematical results are

outlined. Based on these results, closed form expressions for the lower

bound of ergodic MI and for the asymptotic outage probability are given

in Section 3.3, where analytical results are also illustrated and validated

through simulations.

3.1 System model

3.1.1 Channel model

Consider a discrete-time, baseband MIMO system with K0 transmit and

Kn receive antennas. Information symbols are conveyed from the trans-

mitter to the receiver via n − 1 successive clusters of scatterers, where

the i-th cluster has Ki scatterers as shown in Fig. 3.1. The end-to-end

equivalent channel matrix H is given by

H =
1√
Nn

Hn · · ·H1, (3.1)
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where the MIMO channels between the (i − 1)-th cluster and i-th cluster

are denoted by Hi. We assume that the component channels Hi, 1 ≤ i ≤
n, are flat fading and follow i.i.d. complex Gaussian distribution with

zero mean and unit variance. The channels corresponding to different

clusters are statistically independent of each other. In line with [11, 13],

the channel matrix H is normalized by the constant Nn =
∏n

i=1Ki so that

the total energy of the channel is equal to an AWGN channel with an

array gain E[Tr(HH†)] =
∑

i,j E[‖Hij‖2] = K0.

The presence of independent Gaussian matrix Hi in (3.1) requires inde-

pendent and richly-scattered environment between the (i− 1)-th and i-th

clusters, where a large number of independently reflected and scattered

paths exists [3]. Between the channels Hi and Hi+1, the two environ-

ments are connected only via the Ki scatterers/keyholes. By using differ-

ent numbers of clusters and scatterers, the cascaded MIMO channel (3.1)

embraces a general family of MIMO fading channels. For instance, when

n = 1 it corresponds to the conventional Rayleigh MIMO channel [49].

And when n = 2 and K1 = 1, it degenerates into the MIMO keyhole

channel [12]. In [10, 11], the channel (3.1) is known as double scattering

channel1 when n = 2 and K1 is arbitrary. In [25], this MIMO model was

validated by a measurement campaign in a typical office building. For

cascaded MIMO model with arbitrary number of clusters, the asymptotic

eigenvalue distribution of the channel matrix was studied in [13]. Note

that the channel model (3.1) has been also used to described the multi-hop

MIMO relay channels assuming noiseless relays [50,51].

3.1.2 Signal model and mutual information

The channel output vector y ∈ C
Kn at a given time instance is of the form

y = Hx+ z, (3.2)

where x ∈ C
K0 is the transmit vector that follows the complex Gaussian

distribution x ∼ CN (0,Σ) with Σ = E[xx†]. The additive noise z ∈ C
Kn is

modeled as an i.i.d. complex Gaussian vector, i.e. z ∼ CN (0, IKn).

As the channel H is only known at the receiver but not at the transmit-

1A more general MIMO model is considered in [10, 11]. The channel is charac-
terized by a matrix product involving three deterministic matrices, i.e. transmit,
receive, and scatterer correlation matrices, and two independent complex Gaus-
sian matrices. As a special case, the channel (3.1) corresponds to the scenario
where the antenna elements and the scattering objects are sufficiently separated
that the spatial correlations can be ignored.
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Figure 3.1. MIMO communications over the Rayleigh product channel with K0 transmit
antennas, Kn receive antennas, and Ki scatterers in i-th cluster.

ter, the transmit symbols are independent across antennas and the power

is equally allocated, i.e. Σ = γ̄IK0 . Here, γ̄ refers to the average SNR per

received antenna. The instantaneous MI of the MIMO channel (3.2) in

nats/sec/Hz is given by [11, Eq. (51)] as

I = log det
(
IKn + γ̄HH†

)
. (3.3)

By eigenvalue decomposition, the Hermitian matrix Q = HH† can be

written as UΛU†, where Λ is a diagonal matrix with entries Λi,i = λi

being the ordered eigenvalues of Q. The matrix U is unitary with the

i-th column being the eigenvector corresponding to λi. Substituting the

matrix decomposition into (3.3), I can be written in terms of λi as

I =

Kn∑
i=1

log (1 + γ̄ λi) . (3.4)

For the forthcoming analysis, we introduce the Empirical Spectral Distri-

bution (ESD) of the Hermitian matrix Q as

F̃Q(λ) =
1

Kn

Kn∑
i=1

1(λi ≤ λ),

where 1(·) denotes the indicator function. Now the MI (3.4) can be rewrit-

ten in terms of F̃Q(λ) as

I = Kn

ˆ
log(1 + γ̄ λ) dF̃Q(λ). (3.5)

3.2 Linear spectral statistics of Rayleigh product ensembles

The normalized statistic I/Kn is known as the Linear Spectral Statis-

tics (LSS) of random matrix Q [52]. For a general function ϕ(·), we obtain
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explicit expressions for the mean and distribution of the statistic

L =
1

Kn

Kn∑
i=1

ϕ(λi) =

ˆ
ϕ(λ) dF̃Q(λ). (3.6)

These results are divided into non-asymptotic one for finite dimensional

matrix Q and asymptotic one with dimensions of Q growing to infinity.

3.2.1 Non-asymptotic ergodic statistics

Evaluating the ergodic LSS E[L] of finite dimensional matrix Q requires

the joint density of the eigenvalues of Q. Upon the submission of Publi-

cation IV, there was no computable closed-form expression for the finite

dimensional Rayleigh product ensembles with arbitrary n. By assuming

that all matrix dimensions are identical, i.e. Ki = K, 0 ≤ i ≤ n, a lower

bound for the ergodic LSS becomes available. This lower bound is enabled

by the Weyl’s inequality between the real eigenvalue of Q and the com-

plex eigenvalues of matrix H, the joint density of which is recently derived

in [53].

By eigenvalue decomposition, the square matrix H can be factorized as

H = VΞV−1, where Ξ is a diagonal matrix. The diagonal entries Ξi,i = ξi

are the complex eigenvalues of H with ordered squared absolute values,

i.e. 0 ≤ ‖ξK‖2 ≤ · · · ≤ ‖ξ1‖2 < ∞. The partial LSS of matrix Q is lower

bounded by the Weyl’s inequality [54]

m∑
i=1

ϕ(λi) ≥
m∑
i=1

ϕ(‖ξi‖2), ∀m ∈ {1, . . . ,K}, (3.7)

where the function ϕ(t) is assumed to satisfy the following conditions:

1. ϕ(t) is an increasing function for t > 0;

2. ϕ(et) is a convex function of t;

3. ϕ(0) = limt→0 ϕ(t) = 0.

According to [53], the joint density of squared absolute values yi =

Nn‖ξi‖2, i = 1, . . . ,K, is given by

f(y1, . . . , yK) = per

(
yj−1
i

Γ(j)n
gn (

√
yi)

)
, 0 ≤ yK ≤ · · · ≤ y1 <∞, (3.8)

where the argument of the operator per(·) is a K × K matrix, i.e. i, j =

1, . . . ,K. The operator per(A) denotes the permanent of matrix A = (ai,j)

such that

per(A) =
∑

σ∈PK

K∏
i=1

ai,σ(i), (3.9)

22



Cascaded MIMO Rayleigh Channels

where σ = {σ(i)}1≤i≤K is a permutation of the integers 1, . . . ,K, and the

sum is taken over all the K! permutations PK . In (3.8), the function

gn (
√
yi) = Gn,0

0,n

⎛⎝yi
∣∣∣∣∣∣ −
0, . . . , 0

⎞⎠ (3.10)

refers to the Meijer’s G-function. The general form of G-function is given

by

Gm,n
p,q

⎛⎝x
∣∣∣∣∣∣ a1, . . . , an, an+1, . . . , ap

b1, . . . , bm, bm+1, . . . , bq

⎞⎠
=

1

2πı

ˆ
C

∏m
j=1 Γ(bj + z)

∏n
j=1 Γ(1− aj − z)x−z∏p

j=n+1 Γ(aj + z)
∏q

j=m+1 Γ(1− bj − z)
dz,

where the contour C is chosen in such a way that the poles of Γ(bj + z),

j = 1, . . . ,m, are separated from the poles of Γ(1− aj − z), j = 1, . . . , n.

By setting m = K in (3.7), a lower bound LLB of L is obtained as

LLB =

K∑
i=1

ϕ(‖ξi‖2) ≤ L. (3.11)

Integrating LLB over the joint density (3.8) with substitution ‖ξi‖2 =

yi/K
n, the lower bound of ergodic LSS is obtained. As indicated in [53],

this integration can be greatly simplified by making use of a property of

matrix permanent for order statistics. Namely, it was proven in [55] that

if a joint density of ordered random variables 0 ≤ yK ≤ · · · ≤ y1 < ∞
is written in the form per(hj(yi)), i, j = 1, . . . ,K, the corresponding un-

ordered random variables, denoted by xj , j = 1, . . . ,K, are independent of

each other with densities hj(x), j = 1, . . . ,K. Clearly, for the joint density

(3.8) the resulting density functions of the unordered and independent

random variables are

hj(x) =
xj−1

Γ(j)n
gn
(√
x
)
, j = 1, . . . ,K. (3.12)

Instead of dealing with random variables with non-trivial correlation as

specified by a matrix permanent, we are dealing with independent ran-

dom variables. As such, the lower bound of ergodic LSS can be calculated

as

E [LLB] =
1

K

K∑
j=1

E

[
ϕ
( xj
Kn

)]
=

K∑
j=1

ˆ ∞

0

ϕ (x/Kn)xj−1

K Γ(j)n
gn
(√
x
)
dx. (3.13)

3.2.2 CLT of linear spectral statistics

Asymptotic spectral analysis using random matrix theory deals with LSS

of large dimensional random matrices. The asymptotic result shows the
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limiting behavior of L and is formally valid for matrices with infinite di-

mensions. However, a useful feature of the asymptotic result is that the

statistics L converges to its limiting value μL and the rate of convergence

is fast as matrix dimensions increase. Therefore, the limiting LSS μL

serves as a good approximation for the expected value E[L]. By scaling

with the dimension Kn, the fluctuation of a wide range of scaled LSSs,

including the mutual information, is non-vanishing and converges to a

limit. This result is useful when computing the asymptotic variance of

the functional

XL = Kn(L − μL) = Kn

ˆ
ϕ(λ)d

(
F̃Q(λ)− FQ(λ)

)
, (3.14)

where FQ(λ) denotes the limiting eigenvalue distribution of Q as Ki → ∞.

Furthermore, the limiting distribution of XL can be shown to be a Gaus-

sian distribution for ϕ(λ) that is analytic on the support of FQ(λ), c.f.

Proposition 2. This is the so-called Central Limit Theorem (CLT) for LSS

of random matrix. The first work in this direction was done by Jons-

son [56] for Wishart matrix and polynomial LSS. Further work was done

by Johansson [57], Sinai and Soshnikov [58], Diaconis and Evans [59],

Bai and Silverstein [60], Mingo and Nica [61], Breuer and Duits [62],

among others. An direct application of the CLT for matrix ensembles is

to approximate the distribution of the corresponding LSS with a Gaus-

sian distribution. This only requires the expectation and variance of the

LSS, which, in most of the cases, are much easier to obtain than the full

distribution.

In the following, we assume n = 2 and use the limit limK→∞ to denote

the asymptotic regime

Ki → ∞, with θ =
K1

K2
and ζ =

K0

K1
fixed. (3.15)

In the asymptotic regime (3.15), Silverstein [63] has shown that the ESD

F̃Q(λ) converges almost surely to a non-random limiting distribution FQ(λ).

Such a convergence can be alternatively established via the convergence

of resolvent G̃Q(z) to the Cauchy transform GQ(z), defined as

G̃Q(z) = tr (IK2z −Q)−1 =

ˆ
1

z − λ
dF̃Q(λ),

GQ(z) =

ˆ
SQ

1

z − λ
dFQ(λ). (3.16)

Here, z ∈ C
+ = {z : Im(z) > 0} and SQ denotes the support of FQ(λ).

Using multiplicative free convolution, Müller has shown in [11] that for

any two unitary invariant random matrices whose entries are i.i.d. with
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zero mean and unit variance, such as H1 and H2, the Cauchy transform

of Q = 1
N2

H2H1H
†
1H

†
2 satisfies the cubic equation

z2G3
Q(z) + (θζ + θ − 2)zG2

Q(z) +
(
(θζ − 1)(θ − 1)− θz

)
GQ(z) + θ = 0. (3.17)

Let us consider the fluctuations of the linear functional XL, defined as

σ2L = E[X2
L] = K2

2 E

[
(L − μL)2

]
. (3.18)

Applying an integral identity2 [60, Eq. (1.14)] to (3.14), we obtain an

alternative form of XL given in terms of Cauchy transform GQ(z) and the

resolvent G̃Q(z)

XL =
1

2πı

˛
C
ϕ(z)GK(z)dz, (3.19)

where GK(z) = K2

(
G̃Q(z)− GQ(z)

)
. The complex integral on the right

hand side of (3.19) is taken over any positively oriented closed contour C
enclosing the support of FQ(λ). After substituting (3.19) into (3.18), we

obtain

σ2L = − 1

4π2

‹
Cx,Cy

ϕ(x)ϕ(y)Cov (GK(x), GK(y)) dxdy, (3.20)

where the contours Cx and Cy are non-overlapping and are taken in the

same way as in (3.19). The operator Cov (GK(x), GK(y)) = E [GK(x)GK(y)]

refers to the covariance function of matrix resolvent scaled by the dimen-

sionK2. The following result for the covariance function is derived in Pub-

lication VI using free probability theory for the second order limiting dis-

tribution of large random matrices.

Proposition 1. The covariance function Cov (GK(x), GK(y)) is given by

G′
Q(x)G′

Q(y)R(GQ(x),GQ(y)) +
∂2

∂x∂y
log

GQ(x)− GQ(y)

x− y
, (3.21)

where R(x, y) denotes the second order R-transform

R(x, y) =
G′
P(1/x)G′

P(1/y)

x2y2(GP(1/x)− GP(1/y))2
− 1

(x− y)2
, (3.22)

and GP(z) is the Cauchy transform of a Marčenko-Pastur distribution with

parameter ζ as in (3.15)

GP(z) =
1

2
+

1− ζ

2z
−
√

1

4
− 1 + ζ

2z
+

(1− ζ)2

4z2
. (3.23)

2The definition of Stieltjes transform in [60] is different from the Cauchy trans-
form by a minus sign.
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In literature, the covariance function GB(x, y) for the Wishart typeN×N
random matrix B = (1/N)X†TX has been studied in [60], where T is a

non-random Hermitian matrix and X is a Gaussian like3 random matrix

with i.i.d. entries. Therein, the correlation function of B has the form

GB(x, y) =
G′
B(x)G′

B(y)

(GB(x)− GB(y))
2 − 1

(x− y)2
, (3.24)

and it is subsequently used to derive an asymptotic variance of Rayleigh

MIMO capacity in [64–66]. Note that the second term of (3.21) is exactly

the same as (3.24) if B is replaced by Q = (1/K2)H2PH†
2 and it is as-

sumed that P = H1H
†
1/K1 is non-random. Therefore, the variance σ2L of

Rayleigh product ensemble has a different functional structure than for

the Rayleigh MIMO matrix. The increased fluctuation of XL is due to a

non-zero second order R-transform R(x, y). For general discussion on the

free probability theory, we refer to [67, 68]. The concept of second order

limiting distribution and the relevant free probability machinery are es-

tablished in [69–72] for various free random variables. The combinatorial

explanations can be found in [61] via non-crossing permutations.

Based on the CLT for the Wishart type matrices [60, Lemma 1.1], we

have proven in Publication VI the following CLT for the Rayleigh product

ensembles with analytic function ϕ(·).

Proposition 2. In the asymptotic regime (3.15), the linear functional XL

in (3.14) converges to a zero-mean Gaussian random variable with vari-

ance σ2L given by (3.20) and

μL =
1

2πı

˛
C
ϕ(z)GQ(z)dz. (3.25)

Note that the CLT of LSS for the biorthogonal ensembles, such as the

Rayleigh product ensemble, was proved by Breuer and Duits [62] for poly-

nomial functions ϕ(x). However, it is not clear how to extend this result

for generic analytic functions ϕ(x) such as the MI ϕ(x) = log(1 + γ̄x).

Recently, the CLT for the product of two real and square random matri-

ces was proven by Götze, Naumov, and Tikhomirov [73] for smooth func-

tion ϕ(x).

3Each entry of the Gaussian like matrix has the same second and fourth mo-
ments as a Gaussian random variable.
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3.3 Performance of cascaded MIMO channels

Using results for the LSS of Rayleigh product ensembles in Section 3.2,

the information theoretical metrics of the presumed MIMO channel can

be obtained. Here we consider two types of fading channels:

• Ergodic channel: The fading channel is random and takes indepen-

dently a new value for each coherence time. The codeword spans

over infinitely many coherence time periods.

• Non-ergodic channel: The fading channel is random and quasi-static.

It remains constant over the transmission duration of the codeword

as the length of codeword grows to infinity.

3.3.1 Ergodic mutual information and rate scaling law

When assuming ergodic channel, the transmitted codeword experiences

all realizations of the fading channel H. A reliable rate of communication

E[I], a.k.a. ergodic MI, can be achieved by coding over many independent

fades of the channel.

It can be easily verified that the MI ϕ(x) = log(1 + γ̄x) fulfills the con-

ditions of the inequality (3.7). Thus, a lower bound for the MI (3.4) is

obtained as

ILB =
K∑
i=1

log(1 + γ̄‖ξi‖2) ≤ I (3.26)

where the channel dimensions Kj = K, j = 0, . . . , n, are identical. By

using the integral of Meijer’s G-function [74, Eq. (21)] and the identity [75,

Eq. (8.4.6.5)]

log(1 + x) = G1,2
2,2

⎛⎝x
∣∣∣∣∣∣ 1, 11, 0

⎞⎠ , (3.27)

the lower bound of ergodic MI can be calculated from (3.13) as

E[ILB] =
K∑
j=1

1

Γ(j)n
G2,n+2

n+2,1

⎛⎝Kn

γ̄

∣∣∣∣∣∣ 0, 1

0, 0, i, . . . , i

⎞⎠ . (3.28)

An important property of the lower bound (3.28) is its asymptotic tight-

ness when SNR goes to infinity. That is, as γ̄ → ∞ the lower bound (3.26)

becomes exact

ILB = log

(
γ̄K

K∏
i=1

‖ξi‖2
)

= log

(
γ̄K

K∏
i=1

λi

)
= I, (3.29)

where we have used the fact that
∏K

i=1‖ξi‖2 =
∏K

i=1 λi.

27



Cascaded MIMO Rayleigh Channels

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

SNR (dB)

E
rg

od
ic

 m
ut

ua
l i

nf
or

m
at

io
n 

(n
at

s/
s/

H
z)

 

 

Analytical (3.28)
Simulation

K = 2

K = 4

K = 8

Figure 3.2. Ergodic MI of multiple cluster scattering MIMO channels assuming 3 clus-
ters (n = 4). In all cases, the number of antennas equals the number of
scatterers per cluster.

The scaling law for the ergodic MI in the high SNR regime can be un-

derstood using the result (3.13) and the asymptotic tightness property.

Specifically, in the large SNR regime as γ̄ → ∞, a simpler expression for

the ergodic MI is obtained by replacing ϕ(x) = log(γ̄x) in (3.13). Namely,

we have

E[I] = nK

(
K∑
i=1

1

i
− γ0 − 1

)
+K log

( γ̄

Kn

)
, (3.30)

where γ0 = limK→∞
(∑K

i=1 1/i− logK
)

≈ 0.5772 is the Euler’s constant.

The per antenna rate scaling law at high SNR is obtained as

lim
K→∞

E[I]
K

= log(γ̄)− n. (3.31)

The scaling law (3.31) indicates that the per antenna ergodic MI scales as

log(γ̄), and is a decreasing function of the number of clusters.

In Fig. 3.2, a 3-cluster (n = 4) scattering MIMO channel is considered

with the number of scatterers per cluster being K = 2, 4, and 8. The

ergodic MI in nats/sec/Hz is plotted as a function of the received SNR.

It is seen that the ergodic MI increases as the number of scatterers K

(number of transceiver antennas) increases. This behavior is in line with

the conventional MIMO channel model (n = 1), where increased spatial

diversity (richness of the scattering) improves the ergodic MI [49].
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Figure 3.3. Per antenna ergodic MI of multiple cluster scattering MIMO channels as-
suming K = 8 with different numbers of clusters. In all cases, the number
of antennas equals the number of scatterers per cluster. For n = 1 the an-
alytical curve is obtained from the exact ergodic MI formula derived in [49].
For n = 2, 3 the analytical curves are obtained from the ergodic MI lower
bound (3.28).

In Fig. 3.3, a scenario involving a fixed number of scatterers per clus-

ter (K = 8) is considered with the number of clusters being 1 and 2. In

addition, the conventional MIMO channel model (n = 1) has been consid-

ered. In order to verify the derived scaling law (3.31), we have plotted the

per antenna ergodic MI as a function of the received SNR. It is observed

that for a fixed SNR the ergodic MI decreases as the number of clusters

increases. This observation is in agreement with the analytical scaling

law (3.31). We also observe that the derived scaling law captures the be-

havior of the ergodic MI well at high SNR. As expected, we see from both

figures that the lower bound (3.28) approaches the true value as the SNR

increases.

3.3.2 Outage probability

Assuming a non-ergodic channel, the channel H, albeit random, remains

fixed for the duration of the transmitted codeword as the length of code-

word grows to infinity. Without CSI at the transmitter, there is a non-zero

probability, independent of the code length, that the MI (3.3) falls below

any positive rate. The error probability corresponding to this rate cannot
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be decreased exponentially with the code length [76]. In this case, no re-

liable transmission is possible and the performance cannot be evaluated

using the ergodic MI. Instead, the fundamental limit for such a system

can be explained using the rate versus outage tradeoff, characterized by

the CDF of MI I. Given a fixed rate r, the outage probability is defined as

Pout(r) = Pr{I ≤ r} = FI(r), (3.32)

where FI(·) denotes the CDF of I.

By Proposition 2, the MI I of Rayleigh product channels with n = 2 is

Gaussian in the asymptotic regime (3.15). Then the CDF FI(r) can be

approximated by the Gaussian distribution as

FI(r) ≈
1

2

(
1 + erf

(
r −K2μI
σI

√
2

))
(3.33)

and thus the outage MI is

Iout ≈ K2μI + σI
√
2 erf−1(2Pout − 1), Pout ∈ (0, 1). (3.34)

In (3.33) and (3.34), μI refers to the limiting MI (3.25) with ϕ(x) = log(1+

γ̄x) for which a closed form expression can be found in [23, Coroll. 2]. In

general case, it is difficult to obtain an explicit expression for the asymp-

totic variance σ2I . However, when the transmitter and receiver have equal

number of antennas, the expression of σ2I can be obtained by solving

(3.20). The result is reported in Publication VI as

σ2I = log
γ̄(ωr − 1)2

γ̄ − ω2
r (2ωr − 2)

, (3.35)

where ωr ≤ 0 is the solution of the cubic equation

t3 − 2t2 + (1− γ̄ + γ̄ζ)t+ γ̄ = 0. (3.36)

It is noted that the Gaussian convergence of MI I was established for pos-

sibly correlated and power-imbalanced multi-keyhole MIMO channels [21,

22], when two of the matrix dimensions (among K0, K1, and K2) approach

to infinity while the other one being fixed. However, there is a fundamen-

tal difference between the two MIMO models. Namely, the asymptotic ca-

pacity of MIMO channel in [21, 22] converges to the ergodic capacity with

vanishing variance, while asymptotic variance (3.35) is non-vanishing in

the asymptotic regime (3.15). Furthermore, as ratios of the matrix di-

mensions are not considered in [21,22], some key properties of the MIMO

channels, such as the ergodic MI, cannot be differentiated for different

finite matrix dimensions.
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Figure 3.4. CDF of MI in the presence of 4 × 4 Rayleigh product channel. Solid line:
Gaussian approximation (3.33); markers: simulations; dashed line: the CDF
of MI in the presence of 4× 4 Rayleigh MIMO channel.

In Fig. 3.4 the impact of the number of scatterers K1 and the received

SNR is studied, when a 4×4 MIMO system is considered in the presence of

K1 = 2, 4, 8, and 32 scattering objects. We have plotted the approximative

and empirical outage probability, the latter being obtained by numerical

simulations. The outage probabilities are evaluated at SNRs γ̄ = 3 dB

and γ̄ = 10 dB. For a comparison, we have also plotted the outage proba-

bility of a 4× 4 Rayleigh MIMO channel with independent fading entries.

As the number of scatterers (K1) increases, the MI at a given probabil-

ity level rapidly increases until K1 is equal to the number of antennas.

This phenomenon is especially visible when SNR is 10 dB. We recall that

when the rank of the channel matrix is limited by the number of scat-

terers, increasing the number of scatterers effectively improves the rank

of the channel matrix. When K1 > 4, the matrix rank is limited by the

number of antennas and the improvement of MI is relatively slow. Yet,

the outage probability curve approaches to a limit, which corresponds to

the outage probability of the independent Rayleigh MIMO channel as pre-

dicted in [22].

In Fig. 3.5 we have examined the impact of the number of antennas on

the outage MI. We have plotted the approximative 1% outage MI (3.34)

as a function of received SNR. We assume that the number of transmit
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Figure 3.5. The 1% outage MI of Rayleigh product channels with K1 = 8 scattering ob-
jects and equal numbers of antennas. Solid line: Gaussian quantile approx-
imation (3.34); markers: simulations; dashed line: the outage MI of conven-
tional Rayleigh MIMO channels with equal number of antennas.

and receive antennas are K0 = K2 = 2, 4, 8, and 16 while the number

of scatterers is fixed to 8. As expected, the outage MI for the Rayleigh

product channel is lower than for the conventional Rayleigh MIMO chan-

nel due to the presence of a finite number of scatterers. In the high SNR

regime, the outage MI curves of both channels attain the same slope when

K0 ≤ K1, which suggests that the MI scales at the same rate as the limit-

ing Rayleigh MIMO channel. On the other hand, when K1 < K0 there is

an increasing gap between the two channels as SNR increases. Finally, it

is observed from Fig. 3.4 and 3.5 that the Gaussian approximation (3.33)

and (3.34) is reasonably accurate for a wide range of parameter settings.

3.3.3 Finite-SNR diversity-multiplexing tradeoff

The concept of Diversity-Multiplexing Tradeoff (DMT) was originally pro-

posed in [77] to characterize the diversity gain, related to the link reli-

ability, and the multiplexing gain, related to the spectral efficiency. The

DMT studied in [77] for asymptotic SNR indicates that both types of per-

formance gains can be obtained simultaneously while satisfying a funda-

mental tradeoff. The DMTs for asymptotic SNR were later calculated for

the Rayleigh product channel assuming a perfect receiver [20] as well as
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a linear receiver [78]. The operational interpretation of the DMT frame-

work is via the existence of universal codes, which are tradeoff optimal

in the high SNR regime [79]. In space-time code design [80], DMT repre-

sents a useful analytical tool to characterize the asymptotic performance

of codes. However, the asymptotic tradeoff provides a too optimistic upper

bound to estimate the operational performance at realistic SNRs. Fur-

thermore, recent works have shown that codes optimized for high SNR

may not be optimal at low or moderate SNR [81]. Motivated by these facts,

Narasimhan [81] proposed a finite-SNR DMT framework, which charac-

terizes the non-asymptotic DMT at realistic SNR levels. In presence of

correlated multi-keyhole MIMO channels, authors in [82] derived an ap-

proximation for the finite-SNR DMT, which is accurate whenK0,K2 � K1

at relatively high SNR levels. Assuming K1 = 1, the exact tradeoff curve

can be obtained by [51, Th. 2], where the DMT is calculated in the context

of amplify-and-forward relay channels with single relay antenna. In Pub-

lication VI and VII, we obtained the finite-SNR DMT for Rayleigh prod-

uct channels for a wide range of matrix dimensions at arbitrary SNR. It

is noted that the considered DMT analysis may not be sufficient to char-

acterize the performance of MIMO communications, since two different

MIMO systems may have the same DMT, see e.g. [51, 82]. In this case,

authors in [82] introduced the SNR offset and used it together with finite-

SNR DMT to estimate the channel outage probability. Nevertheless, we

restrict our discussion within the scope of DMT analysis as also been con-

sidered in [20,48,77,78,81] and one may resort to the asymptotic analysis

in Section 3.3.2 to calculate the outage probability.

The multiplexing gain Gm of a MIMO channel is defined in [82, Eq. (21)]

as

Gm =
k

μI
r, (3.37)

where k = min(Ki), i = 0, . . . , n. The multiplexing gain provides an indica-

tor for the sensitivity of the rate adaptation strategy as the SNR changes.

When the applied code attains a higher multiplexing gain, the rate adap-

tation tends to respond more dramatically on the SNR variations. At a

fixed multiplexing gain, the finite-SNR diversity gain Gd(Gm, γ) is defined

as the negative slope of the log-log curve of outage probability Pout(r) ver-

sus SNR with rate r = Gm μI/k,

Gd(Gm, γ̄) = −∂ logPout (r)

∂ log γ̄
. (3.38)

At a particular SNR and multiplexing gainGm, the diversity gainGd(Gm, γ̄)
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provides an estimate for the additional SNR needed to reduce the error

probability by a certain amount. Using the approximated outage proba-

bility (3.33), the finite-SNR DMT can be obtained for the Rayleigh product

channel when n = 2.

In Fig. 3.6 we have plotted the finite-SNR diversity gain as a function

of multiplexing gain in the range [0, 2] achievable for a 4 × 4 Rayleigh

product channel with n = 2 and K1 = 2. We have compared the approx-

imated tradeoff curves with numerical simulations at SNRs γ̄ = 0 dB

and γ̄ = 5 dB. Numerical results show that the proposed approximation

accurately estimates the MIMO diversity at operational SNR levels. As

the multiplexing gain approaches zero, the approximation error increases.

This is due to the fact that the diversity gain at small Gm is characterized

by the tail behavior of the outage probability, which is not captured by the

Gaussian approximation (3.33) at finite matrix dimensions. For compari-

son purposes, we have also plotted the DMT of Rayleigh product channels

according to [20, Eq. (8)], when SNR approaches infinity. It is clear that

the asymptotic SNR DMT significantly overestimate the channel diversity

at the considered SNR levels.
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4. Conclusions

Radio signal propagation over wireless channels is subject to various elec-

tromagnetic mechanisms. In practical communication scenarios, these ef-

fects result in complicated multipath and shadowing phenomena. The sta-

tistical modeling provides an universal characterization for a wide range

of wireless communication channels. It facilitates the performance analy-

sis of communication systems operating over the wireless channels and

enables optimal transceiver designs under certain statistical criterion.

The so-called cascaded fading model serves as an extension to the ba-

sic statistical models and is shown to accurately capture some radio-wave

propagation phenomena, such as lognormal shadowing, indoor signal prop-

agations, and rank deficiency in multiantenna communications.

In this thesis, we described the linear transfer function of the cascaded

fading channels with additive white Gaussian noise. In cases of single

transceiver antenna and single scatterer, we studied the amplitude of the

equivalent end-to-end channel as well as its physical motivation. With

the channel state information available at the receiver only, the statis-

tics of the cascaded channel amplitudes is equivalent to the multiplica-

tion of a sequence of random variables, each corresponding to the compo-

nent channel. In Publication I, the distribution of products of Nakagami-

m RVs was derived by utilizing a moment-based approximation. Using

this result, we obtained in Publication II the outage probability of the

cascaded Nakagami-m fading channels assuming non-trivial correlations

among component channels. Furthermore, we considered in Publication

III a cascaded Rician channel in the framework of the time-reversal trans-

mission. The complex envelop of the received signal after time-reversal

transmission was modeled as a product of two non-central complex Gaus-

sian random variables. The distribution of the complex envelop, obtained

via a bivariate Edgeworth expansion, was used to construct a blind time-
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reversal detector in the presence of deterministic point target embedded

in correlated multipath scattering. By capturing the multipath correla-

tion, the proposed detector outperforms the blind time-reversal detector

reported in literature.

When transceivers are equipped with multiple antennas and there are

multiple scatterers in each cluster, the performance of the communica-

tion systems depends on the statistics of the eigenvalues of the end-to-end

MIMO channels. For the cascaded Rayleigh MIMO channels, we focused

on the MIMO mutual information assuming receiver side channel state

information only. Using random matrix theory and free probability the-

ory, we obtained the ergodic mutual information and outage probability

under various MIMO settings. In Publication IV, a lower bound for the

ergodic mutual information was obtained for cascaded square Rayleigh

MIMO channels. The result indicates that the per antenna rate scales

as log(SNR) − n, decreasing with the number of component channels n.

In Publications V and VI, the asymptotic variance of mutual information

was obtained for n = 2 in the large dimensional regime. Compared to

the conventional Rayleigh MIMO channel with n = 1, the cascaded chan-

nels induce a higher asymptotic variance of mutual information due to

increased eigenvalue fluctuation. In Publications VI and VII, the out-

age probability of the cascaded Rayleigh MIMO channel was proven to be

Gaussian when channel dimensions grow to infinity. Using this result, a

simple expression for the fundamental tradeoff between channel diversity

gain and multiplexing gain was obtained. Results show that the known

tradeoff curves for infinite SNR significantly overestimate the channel di-

versity gain when applied at realistic SNR levels.
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Errata

Publication I

In Fig. 1, the CCDF curves with triangular markers should refer to the

case ρ = 0.3.

Publication IV

In the integrand of (10), the factor of the first product in the denominator

should be Γ(aj + z), not Γ(aj + s).

Publication V

The Cauchy transform of P in (9) should be

GP(z) =

√
1

4
− 1 + ζ

2z
+

(1− ζ)2

4z2
− 1

2
− 1− ζ

2z
.
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