5 research outputs found

    Association of activity and subsequent fertility of dairy cows after spontaneous estrus or timed artificial insemination

    Get PDF
    The objective of this observational study was to evaluate the association between increased physical activity at first artificial insemination (AI) and subsequent pregnancy per AI (P/AI) in lactating Holstein cows following spontaneous estrus or a timed AI (TAI) protocol. We also wanted to identify factors associated with the intensity of activity increase (PA) captured by automated activity monitors (AAM) and fertility. Two experiments were conducted, in which cows either were inseminated based on the alert of the AAM system (AAM cows) or received TAI following a 7-d Ovsynch protocol (TAI cows) if not inseminated within a farm-specific period after calving. Experiment 1 included 2,698 AI services from AAM cows and 1,042 AI services from TAI cows equipped with the Smarttag Neck (Nedap Livestock Management) from a dairy farm in Slovakia (farm 1). In the second experiment, 6,517 AI services from AAM cows and 1,226 AI services from TAI cows fitted with Heatime (Heatime Pro; SCR Engineers Ltd.) from 8 dairy farms in Germany (farms 2–9) were included. Pregnancy diagnosis was performed on a weekly basis by transrectal ultrasound (farms 1, 3, 7, 8) or by transrectal palpation (farms 2, 4–6, 9). Estrous intensity was represented by the peak value of the change in activity. In experiment 1, PA was categorized into low (x-factor 0–20) and high (x-factor 21–100) PA, and in experiment 2 into low (activity change = 35–89) and high (activity change = 90–100) PA. In TAI cows from both experiments, PA was additionally categorized into cows with no AAM alert. Data were analyzed separately for AAM and TAI cows using multinomial logistic regression models for PA in TAI cows and logistic regression models for PA in AAM cows and P/AI in both groups. In experiment 1, P/AI of AAM cows was greater for AI services performed with conventional frozen semen (57.6%) compared with sexed semen (47.2%), whereas type of semen only tended to be associated with P/AI in TAI cows (54.4% conventional frozen semen vs. 48.9% sexed semen). In experiment 2, P/AI was greater for fresh semen (AAM cows: 44.4% vs. TAI cows: 44.2%) compared with conventional frozen semen (AAM cows: 37.6% vs. TAI cows: 34.6%). In both experiments, pregnancy outcomes were associated with PA. In experiment 1, AAM cows with high PA (55.1%) had greater P/AI than cows with low PA (49.8%). Within TAI cows, cows with no alert (38.8%) had reduced P/AI compared with cows with low (54.2%) or high PA (61.8%). In experiment 2, AAM cows with high PA (45.8%) had greater P/AI compared with cows with low PA (36.4%). Timed AI cows with no alert (27.4%) had decreased P/AI compared with cows with low (41.1%) or high (50.8%) PA. The greatest risk factors for high PA were parity (experiment 1) and season of AI (except for TAI cows from experiment 1). We conclude that high PA at the time of AI is associated with greater odds of pregnancy for both AAM and TAI cows. In both experiments, about 2 thirds of AAM cows (experiment 1: 69.9% and experiment 2: 70.7%) reached high PA, whereas only approximately one-third or less of TAI cows (experiment 1: 37.3% and experiment 2: 23.6%) showed high PA. Although we observed similar results using 2 different AAM systems for the most part, risk factors for high PA might differ between farms and insemination type (i.e., AAM vs. TAI)

    Timing of Artificial Insemination Using Sexed or Conventional Semen Based on Automated Activity Monitoring of Estrus in Holstein Heifers

    Get PDF
    Investigations on the optimum timing of artificial insemination (AI) following automated activity monitoring (AAM) depending on different types of semen in heifers are limited and in part show controversial results. Therefore, the objective of this observational study was to determine the association between the timing of AI using different characteristics of estrus (i.e., the onset, peak, and end of estrus) and pregnancy per AI (P/AI) in Holstein heifers. Heifers were fitted with a neck-mounted AAM system and inseminated with frozen conventional and sexed semen. The pregnancy per AI (n = 4159) from 2858 heifers from six commercial dairy farms in Germany inseminated upon the alert of an AAM system was evaluated. Estrous intensity was classified based on peak activity into low (35 to 89 index value) and high (90 to 100 index value). We detected a quadratic association between the interval from the onset of estrus to AI and P/AI (p = 0.02). The greatest P/AI was observed for heifers inseminated from 9 to 32 h after the onset of estrus. The intervals from the peak of activity to AI and the end of estrus to AI were not associated with P/AI (p ≥ 0.05). Heifers inseminated with frozen conventional semen (50.1%) had a greater P/AI compared with heifers inseminated with frozen sexed semen (43.3%; p = 0.03). There were no interactions between the intervals from the onset, peak, or end of estrus to AI or the type of semen and the P/AI (p ≥ 0.05). The pregnancy per AI was not associated with estrous intensity (50.5% for low intensity vs. 53.0% for high intensity; p = 0.37). In conclusion, inseminating heifers between 9 and 32 h after the onset of estrus, as detected by the AAM, optimized the P/AI regardless of semen type

    Residue concentrations of cloxacillin in milk after intramammary dry cow treatment considering dry period length

    Get PDF
    Dry cow treatment with an intramammary antibiotic is recommended to reduce the risk of mastitis at the beginning of the next lactation. The dry period may be shortened unintentionally, affecting antibiotic residue depletion and the time when residues reach concentrations below the maximum residue limit (MRL). The objective of this study was to evaluate residue depletion in milk after dry cow treatment with cloxacillin, considering dry periods of 14 (G14d), 21 (G21d), and 28 d (G28d). Overall, fifteen cows with 60 udder quarters were included in the study. For each cow, three of the udder quarters were treated with 1000 mg cloxacillin benzathine (2:1) on d 252, d 259, and d 266 of gestation; one quarter was left untreated. Milk samples were drawn until 20 DIM and milk composition, somatic cell count and cloxacillin residues were analyzed. The HPLC-MS/MS revealed different excretion kinetics for the compounds cloxacillin and cloxacillin benzathine (1:1). All cows showed a cloxacillin and cloxacillin benzathine (1:1) concentration below the MRL of 30 µg/kg after 5 d. In the udder quarters of G21d and G28d, the cloxacillin concentration was already below the MRL at first milking after calving. The cloxacillin benzathine (1:1) concentration in the milk of G28d, G21d, and G14d fell below 30 µg/kg on the 5th, 3rd, and 5th DIM, respectively. Shortening the dry period affects residue depletion after dry cow treatment with cloxacillin. The risk of exceeding the MRL, however, seems low, even with dry periods shorter than 14 d
    corecore