4 research outputs found
Molecular identification of
Human African trypanosomiasis (HAT) has been targeted for zero transmission to humans by 2030. Animal reservoirs of gambiense-HAT could jeopardize these elimination goals. This study was undertaken to identify potential host reservoirs for Trypanosoma brucei gambiense by detecting its natural infections in domestic animals of Chadian HAT foci. Blood samples were collected from 267 goats, 181 sheep, 154 dogs, and 67 pigs. Rapid diagnostic test (RDT) and capillary tube centrifugation (CTC) were performed to search for trypanosomes. DNA was extracted from the buffy coat, and trypanosomes of the subgenus Trypanozoon as well as T. b. gambiense were identified by PCR. Of 669 blood samples, 19.4% were positive by RDT and 9.0% by CTC. PCR revealed 150 animals (22.4%) with trypanosomes belonging to Trypanozoon, including 18 (12%) T. b. gambiense. This trypanosome was found in all investigated animal species and all HAT foci. Between animal species or villages, no significant differences were observed in the number of animals harboring T. b. gambiense DNA. Pigs, dogs, sheep and goats appeared to be potential reservoir hosts for T. b. gambiense in Chad. The identification of T. b. gambiense in all animal species of all HAT foci suggests that these animals should be considered when designing new control strategies for sustainable elimination of HAT. Investigations aiming to decrypt their specific role in each epidemiological setting are important to achieve zero transmission of HAT
Prevalence of pathogenic trypanosome species in naturally infected cattle of three sleeping sickness foci of the south of Chad.
Although a diversity of trypanosome species have been detected in various animal taxa from human African trypanosomosis (HAT) foci, cattle trypanosomosis has not been addressed in HAT foci of west and central African countries including Chad. This study aimed to determine the prevalence of pathogenic trypanosome species in cattle from three HAT foci of the south of Chad. Blood samples were collected from 1466 randomly selected cattle from HAT foci of Mandoul, Maro, and Moïssala in the south of Chad. For each animal, the sex, age and body condition were recorded. Rapid diagnostic test (RDT) was used to search Trypanosoma brucei gambiense antibodies while the capillary tube centrifugation (CTC) test and PCR-based methods enabled to detect and identify trypanosome species. From the 1466 cattle, 45 (3.1%) were positive to RDT. The prevalence of trypanosome infections revealed by CTC and PCR-based method were respectively 2.7% and 11.1%. Trypanosomes of the subgenus Trypanozoon were dominant (6.5%) followed by T. congolense savannah (2.9%), T. congolense forest (2.5%) and T. vivax (0.8%). No animal was found with DNA of human infective trypanosome (T. b. gambiense). The overall prevalence of trypanosome infections was significantly higher in animal from the Maro HAT focus (13.8%) than those from Mandoul (11.1%) and Moïssala HAT foci (8.0%). This prevalence was also significantly higher in animal having poor body condition (77.5%) than those with medium (11.2%) and good (0.5%) body condition. The overall prevalence of single and mixed infections were respectively 9.4% and 1.6%. This study revealed natural infections of several pathogenic trypanosome species in cattle from different HAT foci of Chad. It showed similar transmission patterns of these trypanosome species and highlighted the need of developing control strategies for animal African trypanosomosis (AAT) with the overarching goal of improving animal health and the economy of smallholder farmers
Association between polymorphisms of IL4, IL13, IL10, STAT6 and IFNG genes, cytokines and immunoglobulin E levels with high burden of Schistosoma mansoni in children from schistosomiasis endemic areas of Cameroon.
Eliminating schistosomiasis as a public health problem by 2030 requires a better understanding of the disease transmission, especially the asymmetric distribution of worm burden in individuals living and sharing the same environment. It is in this light that this study was designed to identify human genetic determinants associated with high burden of S. mansoni and also with the plasma concentrations of IgE and four cytokines in children from two schistosomiasis endemic areas of Cameroon. In school-aged children of schistosomiasis endemic areas of Makenene and Nom-Kandi of Cameroon, S. mansoni infections and their infection intensities were evaluated in urine and stool samples using respectively the Point-of-care Circulating Cathodic Antigen test (POC-CCA) and the Kato Katz (KK) test. Thereafter, blood samples were collected in children harbouring high burden of schistosome infections as well as in their parents and siblings. DNA extracts and plasma were obtained from blood. Polymorphisms at 14 loci of five genes were assessed using PCR-restriction fragment length polymorphism and amplification-refractory mutation system. The ELISA test enabled to determine the plasma concentrations of IgE, IL-13, IL-10, IL-4 and IFN-γ. The prevalence of S. mansoni infections was significantly higher (P < 0.0001 for POC-CCA; P = 0.001 for KK) in Makenene (48.6% for POC-CCA and 7.9% for KK) compared to Nom-Kandi (31% for POC-CCA and 4.3% for KK). The infection intensities were also higher (P < 0.0001 for POC-CCA; P = 0.001 for KK) in children from Makenene than those from Nom-Kandi. The allele C of SNP rs3024974 of STAT6 was associated with an increased risk of bearing high burden of S. mansoni both in the additive (p = 0.009) and recessive model (p = 0.01) while the allele C of SNP rs1800871 of IL10 was protective (p = 0.0009) against high burden of S. mansoni. The alleles A of SNP rs2069739 of IL13 and G of SNP rs2243283 of IL4 were associated with an increased risk of having low plasma concentrations of IL-13 (P = 0.04) and IL-10 (P = 0.04), respectively. This study showed that host genetic polymorphisms may influence the outcome (high or low worm burden) of S. mansoni infections and also the plasma concentrations of some cytokines