4 research outputs found

    Table_1_Evidence for the biopsychosocial model of suicide: a review of whole person modeling studies using machine learning.DOCX

    No full text
    BackgroundTraditional approaches to modeling suicide-related thoughts and behaviors focus on few data types from often-siloed disciplines. While psychosocial aspects of risk for these phenotypes are frequently studied, there is a lack of research assessing their impact in the context of biological factors, which are important in determining an individualā€™s fulsome risk profile. To directly test this biopsychosocial model of suicide and identify the relative importance of predictive measures when considered together, a transdisciplinary, multivariate approach is needed. Here, we systematically review the emerging literature on large-scale studies using machine learning to integrate measures of psychological, social, and biological factors simultaneously in the study of suicide.MethodsWe conducted a systematic review of studies that used machine learning to model suicide-related outcomes in human populations including at least one predictor from each of biological, psychological, and sociological data domains. Electronic databases MEDLINE, EMBASE, PsychINFO, PubMed, and Web of Science were searched for reports published between August 2013 and August 30, 2023. We evaluated populations studied, features emerging most consistently as risk or resilience factors, methods used, and strength of evidence for or against the biopsychosocial model of suicide.ResultsOut of 518 full-text articles screened, we identified a total of 20 studies meeting our inclusion criteria, including eight studies conducted in general population samples and 12 in clinical populations. Common important features identified included depressive and anxious symptoms, comorbid psychiatric disorders, social behaviors, lifestyle factors such as exercise, alcohol intake, smoking exposure, and marital and vocational status, and biological factors such as hypothalamic-pituitary-thyroid axis activity markers, sleep-related measures, and selected genetic markers. A minority of studies conducted iterative modeling testing each data type for contribution to model performance, instead of reporting basic measures of relative feature importance.ConclusionStudies combining biopsychosocial measures to predict suicide-related phenotypes are beginning to proliferate. This literature provides some early empirical evidence for the biopsychosocial model of suicide, though it is marred by harmonization challenges. For future studies, more specific definitions of suicide-related outcomes, inclusion of a greater breadth of biological data, and more diversity in study populations will be needed.</p

    CHRNA5 links chandelier cells to severity of amyloid pathology in aging and Alzheimerā€™s disease

    No full text
    Abstract Changes in high-affinity nicotinic acetylcholine receptors are intricately connected to neuropathology in Alzheimerā€™s Disease (AD). Protective and cognitive-enhancing roles for the nicotinic Ī±5 subunit have been identified, but this gene has not been closely examined in the context of human aging and dementia. Therefore, we investigate the nicotinic Ī±5 gene CHRNA5 and the impact of relevant single nucleotide polymorphisms (SNPs) in prefrontal cortex from 922 individuals with matched genotypic and post-mortem RNA sequencing in the Religious Orders Study and Memory and Aging Project (ROS/MAP). We find that a genotype robustly linked to increased expression of CHRNA5 (rs1979905A2) predicts significantly reduced cortical Ī²-amyloid load. Intriguingly, co-expression analysis suggests CHRNA5 has a distinct cellular expression profile compared to other nicotinic receptor genes. Consistent with this prediction, single nucleus RNA sequencing from 22 individuals reveals CHRNA5 expression is disproportionately elevated in chandelier neurons, a distinct subtype of inhibitory neuron known for its role in excitatory/inhibitory (E/I) balance. We show that chandelier neurons are enriched in amyloid-binding proteins compared to basket cells, the other major subtype of PVALB-positive interneurons. Consistent with the hypothesis that nicotinic receptors in chandelier cells normally protect against Ī²-amyloid, cell-type proportion analysis from 549 individuals reveals these neurons show amyloid-associated vulnerability only in individuals with impaired function/trafficking of nicotinic Ī±5-containing receptors due to homozygosity of the missense CHRNA5 SNP (rs16969968A2). Taken together, these findings suggest that CHRNA5 and its nicotinic Ī±5 subunit exert a neuroprotective role in aging and Alzheimerā€™s disease centered on chandelier interneurons

    Unbiased classification of the elderly human brain proteome resolves distinct clinical and pathophysiological subtypes of cognitive impairment

    No full text
    Cognitive impairment in the elderly features complex molecular pathophysiology extending beyond the hallmark pathologies of traditional disease classification. Molecular subtyping using large-scale -omic strategies can help resolve this biological heterogeneity. Using quantitative mass spectrometry, we measured āˆ¼8000 proteins across >600 dorsolateral prefrontal cortex tissues with clinical diagnoses of no cognitive impairment (NCI), mild cognitive impairment (MCI), and Alzheimer's disease (AD) dementia. Unbiased classification of MCI and AD cases based on individual proteomic profiles resolved three classes with expression differences across numerous cell types and biological ontologies. Two classes displayed molecular signatures atypical of AD neurodegeneration, such as elevated synaptic and decreased inflammatory markers. In one class, these atypical proteomic features were associated with clinical and pathological hallmarks of cognitive resilience. We were able to replicate these classes and their clinicopathological phenotypes across two additional tissue cohorts. These results promise to better define the molecular heterogeneity of cognitive impairment and meaningfully impact its diagnostic and therapeutic precision
    corecore