107 research outputs found

    Population Synthesis and the Diagnostics of High-redshift Galaxies

    Get PDF
    The effect of redshift on the observation of distant galaxies is briefly discussed emphasizing the possible sources of bias in the interpretation of high-z data. A general energetic criterion to assess physical self-consistency of evolutionary population synthesis models is also proposed, for a more appropriate use of this important tool to investigate distinctive properties of primeval galaxies.Comment: 8 pages and 6 color figures. Invited talk at the conference "New Quests in Stellar Astrophysics: The link between Stars and Cosmology", 26-30 March, 2001, Puerto Vallarta, Mexico, eds. M. Chavez et al., to be published by Kluwe

    Galaxy Disks

    Full text link
    The formation and evolution of galactic disks is particularly important for understanding how galaxies form and evolve, and the cause of the variety in which they appear to us. Ongoing large surveys, made possible by new instrumentation at wavelengths from the ultraviolet (GALEX), via optical (HST and large groundbased telescopes) and infrared (Spitzer) to the radio are providing much new information about disk galaxies over a wide range of redshift. Although progress has been made, the dynamics and structure of stellar disks, including their truncations, are still not well understood. We do now have plausible estimates of disk mass-to-light ratios, and estimates of Toomre's QQ parameter show that they are just locally stable. Disks are mostly very flat and sometimes very thin, and have a range in surface brightness from canonical disks with a central surface brightness of about 21.5 BB-mag arcsec−2^{-2} down to very low surface brightnesses. It appears that galaxy disks are not maximal, except possibly in the largest systems. Their HI layers display warps whenever HI can be detected beyond the stellar disk, with low-level star formation going on out to large radii. Stellar disks display abundance gradients which flatten at larger radii and sometimes even reverse. The existence of a well-defined baryonic Tully-Fisher relation hints at an approximately uniform baryonic to dark matter ratio. Thick disks are common in disk galaxies and their existence appears unrelated to the presence of a bulge component; they are old, but their formation is not yet understood. Disk formation was already advanced at redshifts of ∼2\sim 2, but at that epoch disks were not yet quiescent and in full rotational equilibrium. Downsizing is now well-established. The formation and history of star formation in S0s is still not fully understood.Comment: This review has been submitted for Annual Reviews of Astronomy & Astrophysics, vol. 49 (2011); the final printed version will have fewer figures and a somewhat shortened text. A pdf-version of this preprint with high-resolution figures is available from http://www.astro.rug.nl/~vdkruit/jea3/homepage/disks-ph.pdf. (table of contents added; 71 pages, 24 figures, 529 references

    Stellar Population Diagnostics of Elliptical Galaxy Formation

    Full text link
    Major progress has been achieved in recent years in mapping the properties of passively-evolving, early-type galaxies (ETG) from the local universe all the way to redshift ~2. Here, age and metallicity estimates for local cluster and field ETGs are reviewed as based on color-magnitude, color-sigma, and fundamental plane relations, as well as on spectral-line indices diagnostics. The results of applying the same tools at high redshifts are then discussed, and their consistency with the low-redshift results is assessed. Most low- as well as high-redshift (z~1) observations consistently indicate 1) a formation redshift z>~3 for the bulk of stars in cluster ETGs, with their counterparts in low-density environments being on average ~1-2 Gyr younger, i.e., formed at z>~1.5-2, 2) the duration of the major star formation phase anticorrelates with galaxy mass, and the oldest stellar populations are found in the most massive galaxies. With increasing redshift there is evidence for a decrease in the number density of ETGs, especially of the less massive ones, whereas existing data appear to suggest that most of the most-massive ETGs were already fully assembled at z~1. Beyond this redshift, the space density of ETGs starts dropping significantly, and as ETGs disappear, a population of massive, strongly clustered, starburst galaxies progressively becomes more and more prominent, which makes them the likely progenitors to ETGs.Comment: To appear on Annual Review of Astronomy & Astrophysics, Vol. 44 (2006). 46 pages with 16 figures. Replaced version includes updated references, few typos less, and replaces Fig. 11 and Fig. 16 which had been skrewed u

    The Cosmic Infrared Background: Measurements and Implications

    Get PDF
    The cosmic infrared background records much of the radiant energy released by processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In the past few years, data from the Cosmic Background Explorer mission provided the first measurements of this background, with additional constraints coming from studies of the attenuation of TeV gamma-rays. At the same time there has been rapid progress in resolving a significant fraction of this background with the deep galaxy counts at infrared wavelengths from the Infrared Space Observatory instruments and at submillimeter wavelengths from the Submillimeter Common User Bolometer Array instrument. This article reviews the measurements of the infrared background and sources contributing to it, and discusses the implications for past and present cosmic processes.Comment: 61 pages, incl. 9 figures, to be published in Annual Reviews of Astronomy and Astrophysics, 2001, Vol. 3

    Gas accretion as the origin of chemical abundance gradients in distant galaxies

    Full text link
    It has recently been suggested that galaxies in the early Universe can grow through the accretion of cold gas, and that this may have been the main driver of star formation and stellar mass growth. Because the cold gas is essentially primordial, it has a very low abundance of elements heavier than helium (metallicity). As it is funneled to the centre of a galaxy, it will lead the central gas having an overall lower metallicity than gas further from the centre, because the gas further out has been enriched by supernovae and stellar winds, and not diluted by the primordial gas. Here we report chemical abundances across three rotationally-supported star-forming galaxies at z~3, only 2 Gyr after the Big Bang. We find an 'inverse' gradient, with the central, star forming regions having a lower metallicity than less active ones, opposite to what is seen in local galaxies. We conclude that the central gas has been diluted by the accretion of primordial gas, as predicted by 'cold flow' models.Comment: To Appear in Nature Oct 14, 2010; Supplementary Information included her

    Far-Ultraviolet Radiation from Elliptical Galaxies

    Get PDF
    Far-ultraviolet radiation is a ubiquitous, if unanticipated, phenomenon in elliptical galaxies and early-type spiral bulges. It is the most variable photometric feature associated with old stellar populations. Recent observational and theoretical evidence shows that it is produced mainly by low-mass, small-envelope, helium-burning stars in extreme horizontal branch and subsequent phases of evolution. These are probably descendents of the dominant, metal rich population of the galaxies. Their lifetime UV outputs are remarkably sensitive to their physical properties and hence to the age and the helium and metal abundances of their parents. UV spectra are therefore exceptionally promising diagnostics of old stellar populations, although their calibration requires a much improved understanding of giant branch mass loss, helium enrichment, and atmospheric diffusion.Comment: 46 pages; includes LaTeX text file, 9 PS figures, 1 JPG figure, 2 style files. Full resolution figures and PS version available at http://www.astro.virginia.edu/~rwo/araa99/. Article to appear in Annual Reviews of Astronomy & Astrophysics, 199

    Star Formation in Galaxies Along the Hubble Sequence

    Get PDF
    Observations of star formation rates (SFRs) in galaxies provide vital clues to the physical nature of the Hubble sequence, and are key probes of the evolutionary properties of galaxies. The focus of this review is on the broad patterns in the star formation properties of galaxies along the Hubble sequence, and their implications for understanding galaxy evolution and the physical processes that drive the evolution. Star formation in the disks and nuclear regions of galaxies are reviewed separately, then discussed within a common interpretive framework. The diagnostic methods used to measure SFRs are also reviewed, and a self-consistent set of SFR calibrations is presented as an aid to workers in the field.Comment: 41 pages, with 9 figures. To appear in Volume 36 of the Annual Review of Astronomy and Astrophysic

    Fundamental Strings, Holography, and Nonlinear Superconformal Algebras

    Get PDF
    We discuss aspects of holography in the AdS_3 \times S^p near string geometry of a collection of straight fundamental heterotic strings. We use anomalies and symmetries to determine general features of the dual CFT. The symmetries suggest the appearance of nonlinear superconformal algebras, and we show how these arise in the framework of holographic renormalization methods. The nonlinear algebras imply intricate formulas for the central charge, and we show that in the bulk these correspond to an infinite series of quantum gravity corrections. We also makes some comments on the worldsheet sigma-model for strings on AdS_3\times S^2, which is the holographic dual geometry of parallel heterotic strings in five dimensions.Comment: 25 page

    The Galaxy Structure-Redshift Relationship

    Full text link
    There exists a gradual, but persistent, evolutionary effect in the galaxy population such that galaxy structure and morphology change with redshift. This galaxy structure-redshift relationship is such that an increasingly large fraction of all bright and massive galaxies at redshifts 2 < z < 3 are morphologically peculiar at wavelengths from rest-frame ultraviolet to rest-frame optical. There are however examples of morphologically selected spirals and ellipticals at all redshifts up to z ~ 3. At lower redshift, the bright galaxy population smoothly transforms into normal ellipticals and spirals. The rate of this transformation strongly depends on redshift, with the swiftest evolution occurring between 1 < z < 2. This review characterizes the galaxy structure-redshift relationship, discusses its various physical causes, and how these are revealing the mechanisms responsible for galaxy formation.Comment: 20 pages, 8 figures. Invited Review to appear in "Penetrating Bars Through Masks of Cosmic Dust: The Hubble Tuning Fork Strikes A New Note", ed. D. Block et a

    Lack of phenotypic and evolutionary cross-resistance against parasitoids and pathogens in Drosophila melanogaster

    Get PDF
    BackgroundWhen organisms are attacked by multiple natural enemies, the evolution of a resistance mechanism to one natural enemy will be influenced by the degree of cross-resistance to another natural enemy. Cross-resistance can be positive, when a resistance mechanism against one natural enemy also offers resistance to another; or negative, in the form of a trade-off, when an increase in resistance against one natural enemy results in a decrease in resistance against another. Using Drosophila melanogaster, an important model system for the evolution of invertebrate immunity, we test for the existence of cross-resistance against parasites and pathogens, at both a phenotypic and evolutionary level.MethodsWe used a field strain of D. melanogaster to test whether surviving parasitism by the parasitoid Asobara tabida has an effect on the resistance against Beauveria bassiana, an entomopathogenic fungus; and whether infection with the microsporidian Tubulinosema kingi has an effect on the resistance against A. tabida. We used lines selected for increased resistance to A. tabida to test whether increased parasitoid resistance has an effect on resistance against B. bassiana and T. kingi. We used lines selected for increased tolerance against B. bassiana to test whether increased fungal resistance has an effect on resistance against A. tabida.Results/ConclusionsWe found no positive cross-resistance or trade-offs in the resistance to parasites and pathogens. This is an important finding, given the use of D. melanogaster as a model system for the evolution of invertebrate immunity. The lack of any cross-resistance to parasites and pathogens, at both the phenotypic and the evolutionary level, suggests that evolution of resistance against one class of natural enemies is largely independent of evolution of resistance against the other
    • …
    corecore