17 research outputs found

    Penetration of plasma particles into different non-woven layers

    Get PDF
    By using a DBD plasma, several layers of PET non-woven are treated to study the penetration of plasma into the textile material. The influence of the pore size and of the power on the penetration effect is investigated. By using a horizontal wicking experiment, the plasma effect is quantified

    Plasmabehandeling bij subatmosferische druk van vlakke en poreuze biodegradeerbare polymeren

    No full text

    Influence of successive plasma treatments on PP foils

    No full text
    Polypropylene (PP) foil is treated with a dielectric barrier discharge (DBD) plasma operating in helium at medium pressure. The influence of exposure to the atmosphere between successive treatments is studied by varying the exposure time. Each PP sample is treated with subsequent treatment steps of 5 s. Between two treatment steps, different procedures are applied: 1) the sample remains in the discharge chamber at medium pressure (under helium atmosphere) for a certain time before it is treated again or 2) the pressure is increased to atmospheric pressure, so the sample remains exposed to atmospheric air for a certain time and afterwards the system is pumped down again to medium pressure before it undergoes a successive helium plasma treatment. The treated samples are analysed using contact angle measurements. The results show that exposure to the atmosphere between two treatment steps leads to a lower contact angle. The longer the exposure time, the lower the contact angle becomes. Another experiment showed that the treatment effect could be gradually removed by applying several short plasma treatments of 1 s to saturated samples. With every short treatment step, the contact angle becomes higher. It is believed that this is due to etching of the surface. In the near future, both atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) analysis on some selected samples are planned to elucidate the chemical and/or physical nature of the observed phenomena

    Plasma surface modification of biomedical polymers: influence on cell-material interaction

    No full text
    Polymers are commonly used in industry because of their excellent bulk properties, such as strength and good resistance to chemicals. Their surface properties are for most application inadequate due to their low surface energy. A surface modification is often needed, and plasma surface modification is used with success the past decades. In the past few years, also plasma surface modification for biomedical polymers has been investigated. For biomedical polymers, the surface properties need to be altered to promote a good cell adhesion, growth and proliferation and to make them suitable for implants and tissue engineering scaffolds. This review gives an overview of the use of plasma surface modification of biomedical polymers and the influence on cell-material interactions. First, an introduction on cell-material interaction and on antibacterial and antifouling surfaces will be given. Also, different plasma modifying techniques used for polymer surface modification will be discussed. Then, an overview of literature on plasma surface modification of biopolymers and the resulting influence on cell-material interaction will be given. After an overview of plasma treatment for improved cell-material interaction, plasma polymerization and plasma grafting techniques will be discussed. Some more specialized applications will be also presented: the treatment of 3D scaffolds for tissue engineering and the spatial control of cell adhesion. Antibacterial and antifouling properties, obtained by plasma techniques, will be discussed. An overview of research dealing with antibacterial surfaces created by plasma techniques will be given, antifouling surfaces will be discussed, and how blood compatibility can be improved by preventing protein adhesion

    Surface modification of poly-ε-caprolactone with an atmospheric pressure plasma jet

    No full text
    In this work, poly-epsilon-caprolactone samples are modified by an atmospheric pressure plasma jet in pure argon and argon/water vapour mixtures. In a first part of the paper, the chemical species present in the plasma jet are identified by optical emission spectroscopy and it was found that plasmas generated in argon/0.05 % water vapour mixtures show the highest emission intensity of OH (A-X) at 308 nm. In a subsequent section, plasma jet surface treatments in argon and argon/water vapour mixtures have been investigated using contact angle measurements and X-ray photoelectron spectroscopy. The polymer samples modified with the plasma jet show a significant decrease in water contact angle due to the incorporation of oxygen-containing groups, such as C-O, C=O and O-C=O. The most efficient oxygen inclusion was however found when 0.05 % of water vapour is added to the argon feeding gas, which correlates with the highest intensity of OH (X) radicals. By optimizing the OH (X) radical yield in the plasma jet, the highest polymer modification efficiency can thus be obtained

    Visualization of the penetration depth of plasma in three-dimensional porous PCL Scaffolds

    No full text
    A dielectric barrier discharge (DBD) discharge is used to modify the surface properties of 3-D porous polycaprolactone (PCL) scaffolds. After plasma treatment, the penetration of blue ink into the samples was used to determine the effectiveness of the plasma treatment inside the structures. It was found that the ink could penetrate deeper into the scaffolds after plasma treatment
    corecore