27 research outputs found

    Differential and Prognostic Significance of HOXB7 in Gliomas

    Get PDF
    Diffuse glioma is the most common primary tumor of the central nervous system. The prognosis of the individual tumor is heavily dependent on its grade and subtype. Homeobox B7 (HOXB7), a member of the homeobox family, is abnormally overexpressed in a variety of tumors. However, its function in glioma is unclear. In this study, HOXB7 mRNA and protein expression levels were analyzed in 401 gliomas from the CGGA RNA-seq database (325 cases) and our hospital (76 cases). HOXB7 expression, at both mRNA and protein levels, were upregulated in glioblastoma (GBM) and isocitrate dehydrogenase 1 (IDH1) wild-type glioma tissues. Kaplan–Meier with log-rank test showed that patients with high HOXB7 expression had a poor prognosis (p < 0.0001). Moreover, HOXB7 protein was deleted in 90.9% (20/22) of oligodendrogliomas and 13.0% (3/23) of astrocytomas. The sensitivity and specificity of HOXB7 protein deletion in oligodendroglioma were 90.9% (20/22) and 87.0% (20/23), respectively. To verify the reliability of using HOXB7 in differentiating oligodendroglioma, we used 1p/19q fluorescence in situ hybridization (FISH) testing as a positive control. The Cohen’s kappa coefficient of HOXB7 immunohistochemistry staining and 1p/19q FISH testing was 0.778 (95% CI: 0.594–0.962, p < 0.001). In conclusion, HOXB7 is an independent predictor of poor prognosis in all grade gliomas. Additionally, HOXB7 is also a highly sensitive and specific indicator to differentiate oligodendroglioma from astrocytoma

    Functional evaluation of pure natural edible Ferment: protective function on ulcerative colitis

    Get PDF
    PurposeTo investigate the therapeutic efficiency of a novel drink termed “Ferment” in cases of ulcerative colitis (UC) and its influence on the gut microbiota.MethodIn this study, we developed a complex of mixed fruit juice and lactic acid bacteria referred to as Ferment. Ferment was fed to mice for 35 days, before inducing UC with Dextran Sulfate Sodium Salt. We subsequently investigated the gut microbiome composition using 16S rRNA sequencing.ResultAfter Ferment treatment, mouse body weight increased, and animals displayed less diarrhea, reduced frequency of bloody stools, and reduced inflammation in the colon. Beneficial bacteria belonging to Ileibacterium, Akkermansia, and Prevotellacea were enriched in the gut after Ferment treatment, while detrimental organisms including Erysipelatoclostridium, Dubosiella, and Alistipes were reduced.ConclusionThese data place Ferment as a promising dietary candidate for enhancing immunity and protecting against UC

    Solar Ring Mission: Building a Panorama of the Sun and Inner-heliosphere

    Full text link
    Solar Ring (SOR) is a proposed space science mission to monitor and study the Sun and inner heliosphere from a full 360{\deg} perspective in the ecliptic plane. It will deploy three 120{\deg}-separated spacecraft on the 1-AU orbit. The first spacecraft, S1, locates 30{\deg} upstream of the Earth, the second, S2, 90{\deg} downstream, and the third, S3, completes the configuration. This design with necessary science instruments, e.g., the Doppler-velocity and vector magnetic field imager, wide-angle coronagraph, and in-situ instruments, will allow us to establish many unprecedented capabilities: (1) provide simultaneous Doppler-velocity observations of the whole solar surface to understand the deep interior, (2) provide vector magnetograms of the whole photosphere - the inner boundary of the solar atmosphere and heliosphere, (3) provide the information of the whole lifetime evolution of solar featured structures, and (4) provide the whole view of solar transients and space weather in the inner heliosphere. With these capabilities, Solar Ring mission aims to address outstanding questions about the origin of solar cycle, the origin of solar eruptions and the origin of extreme space weather events. The successful accomplishment of the mission will construct a panorama of the Sun and inner-heliosphere, and therefore advance our understanding of the star and the space environment that holds our life.Comment: 41 pages, 6 figures, 1 table, to be published in Advances in Space Researc

    Experimental Study on Self-Centering Performance of the SMA Fiber Reinforced ECC Composite Beam

    No full text
    The combination of superelastic shape memory alloy fibers and ECC materials can form a new SMA fiber reinforced ECC composite material (SMAF-ECC) with good self-centering performance. In order to study the self-centering performance of the new composite material, 6 groups of pre-notch beam specimens were made for three-point bending cyclic loading tests, and the failure phenomenon, hysteresis curve, self-centering effect and influencing factors of the specimens were analyzed. The research results show that when the SMA fibers are effectively anchored in the ECC matrix, the SMA fibers can exert the superelastic properties to provide the ECC beams with recoverying force, and realize the crack self-closure and deflection self-recovery function for the beams, with the minimum residual crack width and deflection is only 0.9 mm and 1.3 mm respectively. Increasing fiber content can cause a small increase in the self-centering ability of the beams. However, only when the fiber diameter is appropriate, better self-centering effect can be achieved, but the difference caused by fiber diameter in the test was only 5%. SMA Fiber end forms have significant influence on self-centering performance. The knotted end beam can get a more than 70% self-centering ratio, while the straight end beams and bended end beams have no self-centering ability. The research results provide important reference for the research and application of this new self-centering materials and their structures

    A Cysteine-Reloading Process Initiating the Biosynthesis of the Bicyclic Scaffold of Dithiolopyrrolones

    No full text
    Dithiolopyrrolone antibiotics are well known for their outstanding biological activities, and their biosynthesis has been studied vigorously. However, the biosynthesis mechanism of the characteristic bicyclic scaffold is still unknown after years of research. To uncover this mechanism, a multi-domain non-ribosomal peptide synthase DtpB from the biosynthetic gene cluster of thiolutin was selected as an object to study. We discovered that its adenylation domain not only recognized and adenylated cysteine, but also played an essential role in the formation of the peptide bond. Notably, an eight-membered ring compound was also discovered as an intermediate during the formation of the bicyclic structure. Based on these findings, we propose a new mechanism for the biosynthesis of the bicyclic scaffold of dithiolopyrrolones, and unveil additional functions of the adenylation domain

    Effects of Corrosion on Compressive Arch Action and Catenary Action of RC Frames to Resist Progressive Collapse Based on Numerical Analysis

    No full text
    Many negative factors can influence the progressive collapse resistance of reinforced concrete (RC) frame structures. One of the most important factors is the corrosion of rebar within the structure. With increasing severity of corrosion, the duration, robustness, and mechanical performance can be greatly impaired. One specific side effect of rebar corrosion is the significant loss of protection against progressive collapse. In order to quantify the effects of rebar corrosion on load-resisting mechanisms (compressive arch action (CAA) and tensile catenary action (TCA)) of RC frames, a series of numerical investigations were carried out in this paper. The previous experimental results reported in the literature provide a benchmark for progressive collapse behavior as a sound condition and validate the proposed numerical model. Furthermore, based on the verified numerical model, the CAA and TCA with increasing corrosion and an elapsed time from 0 to 70 years are investigated. Comparing with the conventional empirical model, the proposed numerical model has shown the ability and feasibility in predicting the collapse resistance capacity in structures with corroded rebar. Therefore, this numerical modeling strategy provides comprehensive insights into the change of load-resisting mechanisms in these structures, which can be beneficial for optimizing the design

    Power Batteries Health Monitoring: A Magnetic Imaging Method Based on Magnetoelectric Sensors

    No full text
    With the popularity of electric vehicles, the ever-increasing demand for high-capacity batteries highlights the need for monitoring the health status of batteries. In this article, we proposed a magnetic imaging technique (MIT) to investigate the health status of power batteries nondestructively. This technique is based on a magnetic sensor array, which consists of a 16-channel high-performance magnetoelectric sensor, and the noise equivalent magnetic induction (NEB) of each channel reaches 3–5 pT/Hz1/2@10 Hz. The distribution of the magnetic field is imaged by scanning the magnetic field variation of different positions on the surface. Therefore, the areas of magnetic anomalies are identified by distinguishing different magnetic field abnormal results. and it may be possible to classify the battery failure, so as to put forward suggestions on the use of the battery. This magnetic imaging method expands the application field of this high-performance magnetoelectric sensor and contributes to the battery’s safety monitoring. Meanwhile, it may also act as an important role in other nondestructive testing fields

    Additional file 3: of Cross-talk between microtubules and the linker of nucleoskeleton complex plays a critical role in the adipogenesis of human adipose-derived stem cells

    No full text
    Figure S3. Nuclear minor or major axis length changes. (A and B) Nuclear minor or major axis length changes at days 0, 4, 7, and 14 after adipogenic cocktail treatment. The length of the nuclear major or minor axis during adipogenic differentiation of hASCs at various time points. n > 30 cells; one-way ANOVA was performed: ***P < 0.001. (C and D) Nuclear minor or major axis length changes at days 0, 4, 7, and 14 after adipogenic cocktail treatment. The length of the nuclear major or minor axis after nocodazole or taxol treatment 14 days. n > 30 cells; **P < 0.01, ***P < 0.001. (TIFF 190 kb
    corecore