53 research outputs found

    Ribonuclease PH plays a major role in the exonucleolytic maturation of CCA-containing tRNA precursors in Bacillus subtilis

    Get PDF
    In contrast to Escherichia coli, where all tRNAs have the CCA motif encoded by their genes, two classes of tRNA precursors exist in the Gram-positive bacterium Bacillus subtilis. Previous evidence had shown that ribonuclease Z (RNase Z) was responsible for the endonucleolytic maturation of the 3′ end of those tRNAs lacking an encoded CCA motif, accounting for about one-third of its tRNAs. This suggested that a second pathway of tRNA maturation must exist for those precursors with an encoded CCA motif. In this paper, we examine the potential role of the four known exoribonucleases of B.subtilis, PNPase, RNase R, RNase PH and YhaM, in this alternative pathway. In the absence of RNase PH, precursors of CCA-containing tRNAs accumulate that are a few nucleotides longer than the mature tRNA species observed in wild-type strains or in the other single exonuclease mutants. Thus, RNase PH plays an important role in removing the last few nucleotides of the tRNA precursor in vivo. The presence of three or four exonuclease mutations in a single strain results in CCA-containing tRNA precursors of increasing size, suggesting that, as in E.coli, the exonucleolytic pathway consists of multiple redundant enzymes. Assays of purified RNase PH using in vitro-synthesized tRNA precursor substrates suggest that RNase PH is sensitive to the presence of a CCA motif. The division of labor between the endonucleolytic and exonucleolytic pathways observed in vivo can be explained by the inhibition of RNase Z by the CCA motif in CCA-containing tRNA precursors and by the inhibition of exonucleases by stable secondary structure in the 3′ extensions of the majority of CCA-less tRNAs

    Liquid Metal-Based Multifunctional Micropipette for 4D Single Cell Manipulation.

    Get PDF
    A novel manufacturing approach to fabricate liquid metal-based, multifunctional microcapillary pipettes able to provide electrodes with high electrical conductivity for high-frequency electrical stimulation and measurement is proposed. 4D single cell manipulation is realized by applying multifrequency, multiamplitude, and multiphase electrical signals to the microelectrodes near the pipette tip to create 3D dielectrophoretic trap and 1D electrorotation, simultaneously. Functions such as single cell trapping, patterning, transfer, and rotation are accomplished. Cell viability and multiday proliferation characterization has confirmed the biocompatibility of this approach. This is a simple, low-cost, and fast fabrication process that requires no cleanroom and photolithography step to manufacture 3D microelectrodes and microchannels for easy access to a wide user base for broad applications

    Crystal Structure of a Novel Esterase Rv0045c from Mycobacterium tuberculosis

    Get PDF
    There are at least 250 enzymes in Mycobacterium tuberculosis (M. tuberculosis) involved in lipid metabolism. Some of the enzymes are required for bacterial survival and full virulence. The esterase Rv0045c shares little amino acid sequence similarity with other members of the esterase/lipase family. Here, we report the 3D structure of Rv0045c. Our studies demonstrated that Rv0045c is a novel member of α/β hydrolase fold family. The structure of esterase Rv0045c contains two distinct domains: the α/β fold domain and the cap domain. The active site of esterase Rv0045c is highly conserved and comprised of two residues: Ser154 and His309. We proposed that Rv0045c probably employs two kinds of enzymatic mechanisms when hydrolyzing C-O ester bonds within substrates. The structure provides insight into the hydrolysis mechanism of the C-O ester bond, and will be helpful in understanding the ester/lipid metabolism in M. tuberculosis

    Population pharmacokinetics of Amisulpride in Chinese patients with schizophrenia with external validation: the impact of renal function

    Get PDF
    Introduction: Amisulpride is primarily eliminated via the kidneys. Given the clear influence of renal clearance on plasma concentration, we aimed to explicitly examine the impact of renal function on amisulpride pharmacokinetics (PK) via population PK modelling and Monte Carlo simulations.Method: Plasma concentrations from 921 patients (776 in development and 145 in validation) were utilized.Results: Amisulpride PK could be described by a one-compartment model with linear elimination where estimated glomerular filtration rate, eGFR, had a significant influence on clearance. All PK parameters (estimate, RSE%) were precisely estimated: apparent volume of distribution (645 L, 18%), apparent clearance (60.5 L/h, 2%), absorption rate constant (0.106 h−1, 12%) and coefficient of renal function on clearance (0.817, 10%). No other significant covariate was found. The predictive performance of the model was externally validated. Covariate analysis showed an inverse relationship between eGFR and exposure, where subjects with eGFR= 30 mL/min/1.73 m2 had more than 2-fold increase in AUC, trough and peak concentration. Simulation results further illustrated that, given a dose of 800 mg, plasma concentrations of all patients with renal impairment would exceed 640 ng/mL.Discussion: Our work demonstrated the importance of renal function in amisulpride dose adjustment and provided a quantitative framework to guide individualized dosing for Chinese patients with schizophrenia

    A mimicking-of-DNA-methylation-patterns pipeline for overcoming the restriction barrier of bacteria.

    Get PDF
    Genetic transformation of bacteria harboring multiple Restriction-Modification (R-M) systems is often difficult using conventional methods. Here, we describe a mimicking-of-DNA-methylation-patterns (MoDMP) pipeline to address this problem in three difficult-to-transform bacterial strains. Twenty-four putative DNA methyltransferases (MTases) from these difficult-to-transform strains were cloned and expressed in an Escherichia coli strain lacking all of the known R-M systems and orphan MTases. Thirteen of these MTases exhibited DNA modification activity in Southwestern dot blot or Liquid Chromatography-Mass Spectrometry (LC-MS) assays. The active MTase genes were assembled into three operons using the Saccharomyces cerevisiae DNA assembler and were co-expressed in the E. coli strain lacking known R-M systems and orphan MTases. Thereafter, results from the dot blot and restriction enzyme digestion assays indicated that the DNA methylation patterns of the difficult-to-transform strains are mimicked in these E. coli hosts. The transformation of the Gram-positive Bacillus amyloliquefaciens TA208 and B. cereus ATCC 10987 strains with the shuttle plasmids prepared from MoDMP hosts showed increased efficiencies (up to four orders of magnitude) compared to those using the plasmids prepared from the E. coli strain lacking known R-M systems and orphan MTases or its parental strain. Additionally, the gene coding for uracil phosphoribosyltransferase (upp) was directly inactivated using non-replicative plasmids prepared from the MoDMP host in B. amyloliquefaciens TA208. Moreover, the Gram-negative chemoautotrophic Nitrobacter hamburgensis strain X14 was transformed and expressed Green Fluorescent Protein (GFP). Finally, the sequence specificities of active MTases were identified by restriction enzyme digestion, making the MoDMP system potentially useful for other strains. The effectiveness of the MoDMP pipeline in different bacterial groups suggests a universal potential. This pipeline could facilitate the functional genomics of the strains that are difficult to transform

    Characterization of a novel esterase Rv0045c from Mycobacterium tuberculosis.

    Get PDF
    It was proposed that there are at least 250 enzymes in M. tuberculosis involved in lipid metabolism. Rv0045c was predicted to be a hydrolase by amino acid sequence similarity, although its precise biochemical characterization and function remained to be defined.We expressed the Rv0045c protein to high levels in E. coli and purified the protein to high purity. We confirmed that the prepared protein was the Rv0045c protein by mass spectrometry analysis. Circular dichroism spectroscopy analysis showed that the protein possessed abundant β-sheet secondary structure, and confirmed that its conformation was stable in the range pH 6.0-10.0 and at temperatures ≤ 40 °C. Enzyme activity analysis indicated that the Rv0045c protein could efficiently hydrolyze short chain p-nitrophenyl esters (C₂-C₈), and its suitable substrate was p-nitrophenyl caproate (C₆) with optimal catalytic conditions of 39 °C and pH 8.0.Our results demonstrated that the Rv0045c protein is a novel esterase. These experiments will be helpful in understanding ester/lipid metabolism related to M. tuberculosis

    A RecET-assisted CRISPR–Cas9 genome editing in Corynebacterium glutamicum

    No full text
    Abstract Background Extensive modification of genome is an efficient manner to regulate the metabolic network for producing target metabolites or non-native products using Corynebacterium glutamicum as a cell factory. Genome editing approaches by means of homologous recombination and counter-selection markers are laborious and time consuming due to multiple round manipulations and low editing efficiencies. The current two-plasmid-based CRISPR–Cas9 editing methods generate false positives due to the potential instability of Cas9 on the plasmid, and require a high transformation efficiency for co-occurrence of two plasmids transformation. Results Here, we developed a RecET-assisted CRISPR–Cas9 genome editing method using a chromosome-borne Cas9–RecET and a single plasmid harboring sgRNA and repair templates. The inducible expression of chromosomal RecET promoted the frequencies of homologous recombination, and increased the efficiency for gene deletion. Due to the high transformation efficiency of a single plasmid, this method enabled 10- and 20-kb region deletion, 2.5-, 5.7- and 7.5-kb expression cassette insertion and precise site-specific mutation, suggesting a versatility of this method. Deletion of argR and farR regulators as well as site-directed mutation of argB and pgi genes generated the mutant capable of accumulating l-arginine, indicating the stability of chromosome-borne Cas9 for iterative genome editing. Using this method, the model-predicted target genes were modified to redirect metabolic flux towards 1,2-propanediol biosynthetic pathway. The final engineered strain produced 6.75 ± 0.46 g/L of 1,2-propanediol that is the highest titer reported in C. glutamicum. Furthermore, this method is available for Corynebacterium pekinense 1.563, suggesting its universal applicability in other Corynebacterium species. Conclusions The RecET-assisted CRISPR–Cas9 genome editing method will facilitate engineering of metabolic networks for the synthesis of interested bio-based products from renewable biomass using Corynebacterium species as cell factories

    In vitro assembly of the bacterial actin protein MamK from ‘ Candidatus Magnetobacterium casensis’ in the phylum Nitrospirae

    No full text
    ABSTRACT Magnetotactic bacteria (MTB), a group of phylogenetically diverse organisms that use their unique intracellular magnetosome organelles to swim along the Earth’s magnetic field, play important roles in the biogeochemical cycles of iron and sulfur. Previous studies have revealed that the bacterial actin protein MamK plays essential roles in the linear arrangement of magnetosomes in MTB cells belonging to the Proteobacteria phylum. However, the molecular mechanisms of multiple-magnetosome-chain arrangements in MTB remain largely unknown. Here, we report that the MamK filaments from the uncultivated ‘Candidatus Magnetobacterium casensis’ (Mcas) within the phylum Nitrospirae polymerized in the presence of ATP alone and were stable without obvious ATP hydrolysis-mediated disassembly. MamK in Mcas can convert NTP to NDP and NDP to NMP, showing the highest preference to ATP. Unlike its Magnetospirillum counterparts, which form a single magnetosome chain, or other bacterial actins such as MreB and ParM, the polymerized MamK from Mcas is independent of metal ions and nucleotides except for ATP, and is assembled into well-ordered filamentous bundles consisted of multiple filaments. Our results suggest a dynamically stable assembly of MamK from the uncultivated Nitrospirae MTB that synthesizes multiple magnetosome chains per cell. These findings further improve the current knowledge of biomineralization and organelle biogenesis in prokaryotic systems
    • …
    corecore