14 research outputs found
Circulating HPV cDNA in the blood as a reliable biomarker for cervical cancer: A meta-analysis.
The applications of liquid biopsy have attracted much attention in biomedical research in recent years. Circulating cell-free DNA (cfDNA) in the serum may serve as a unique tumor marker in various types of cancer. Circulating tumor DNA (ctDNA) is a type of serum cfDNA found in patients with cancer and contains abundant information regarding tumor characteristics, highlighting its potential diagnostic value in the clinical setting. However, the diagnostic value of cfDNA as a biomarker, especially circulating HPV DNA (HPV cDNA) in cervical cancer remains unclear. Here, we performed a meta-analysis to evaluate the applications of HPV cDNA as a biomarker in cervical cancer. A systematic literature search was performed using PubMed, Embase, and WANFANG MED ONLINE databases up to March 18, 2019. All literature was analyzed using Meta Disc 1.4 and STATA 14.0 software. Diagnostic measures of accuracy of HPV cDNA in cervical cancer were pooled and investigated. Fifteen studies comprising 684 patients with cervical cancer met our inclusion criteria and were subjected to analysis. The pooled sensitivity and specificity were 0.27 (95% confidence interval [CI], 0.24-0.30) and 0.94(95% CI, 0.92-0.96), respectively. The pooled positive likelihood ratio and negative likelihood ratio were 6.85 (95% CI, 3.09-15.21) and 0.60 (95% CI, 0.46-0.78), respectively. The diagnostic odds ratio was 15.25 (95% CI, 5.42-42.94), and the area under the summary receiver operating characteristic curve was 0.94 (95% CI, 0.89-0.99). There was no significant publication bias observed. In the included studies, HPV cDNA showed clear diagnostic value for diagnosing and monitoring cervical cancer. Our meta-analysis suggested that detection of HPV cDNA in patients with cervical cancer could be used as a noninvasive early dynamic biomarker of tumors, with high specificity and moderate sensitivity. Further large-scale prospective studies are required to validate the factors that may influence the accuracy of cervical cancer diagnosis and monitoring
Risk Factors associated with Paraurethral Duct Dilatation following Gonococcal Paraurethral Duct Infection in Men - Fig 1
<p><b>(A).</b> A pinhead-like ostium was present at the 3 o’clock position on the left side of the external urethral orifice. (<b>B).</b> An overflow of transparent liquid was visible after squeezing the lesion.</p
Comparison of demographic, behavioral, and clinical data between patient and control groups.
<p>Comparison of demographic, behavioral, and clinical data between patient and control groups.</p
The Investigation of LRP5-Loaded Composite with Sustained Release Behavior and Its Application in Bone Repair
Low-density lipoprotein receptor-related protein 5 (LRP5) plays a vital role in bone formation and regeneration. In this study, we developed an injectable and sustained-release composite loading LRP5 which could gelatinize in situ. The sustained release of the composite and its efficacy in bone regeneration were evaluated. Sodium alginate, collagen, hydroxyapatite, and LRP5 formed the composite LRP5-Alg/Col/HA. It was found that the initial setting time and final setting time of LRP5-Alg/Col/HA containing 4% alginate were suitable for surgical operation. When the composite was loaded with 40 μg/mL LRP5, LRP5-Alg/Col/HA did not exhibit a burst-release behavior and could sustainably release LRP5 up to 21 days. Up to 18 days, LRP5 released from LRP5-Alg/Col/HA still present the binding activity with DKK1 (Wnt signaling pathway antagonist) and could increase the downstream β-catenin mRNA in bone marrow mesenchymal stem cells. Moreover, LRP5-Alg/Col/HA was found to significantly increase bone mineral density in the defect area after 6 weeks’ implantation of LRP5-Alg/Col/HA into the rats’ calvarial defect area. H&E staining detection demonstrated that LRP5-Alg/Col/HA could mediate the formation of a new bone tissue. Therefore, we concluded that Alg/Col/HA was a suitable sustained-release carrier for LRP5 and LRP5-Alg/Col/HA had a significant effect on repairing bone defects and could be a good bone regeneration material
Deficiency of UCHL1 results in insufficient decidualization accompanied by impaired dNK modulation and eventually miscarriage
Abstract Background Miscarriage is a frustrating complication of pregnancy that is common among women of reproductive age. Insufficient decidualization which not only impairs embryo implantation but disturbs fetomaternal immune-tolerance, has been widely regarded as a major cause of miscarriage; however, the underlying mechanisms resulting in decidual impairment are largely unknown. Methods With informed consent, decidual tissue from patients with spontaneous abortion or normal pregnant women was collected to detect the expression profile of UCHL1. Human endometrial stromal cells (HESCs) were used to explore the roles of UCHL1 in decidualization and dNK modulation, as well as the mechanisms involved. C57/BL6 female mice (7–10 weeks old) were used to construct pregnancy model or artificially induced decidualization model to evaluate the effect of UCHL1 on mice decidualization and pregnancy outcome. Results The Ubiquitin C-terminal hydrolase L1 (UCHL1), as a deubiquitinating enzyme, was significantly downregulated in decidua from patients with miscarriage, along with impaired decidualization and decreased dNKs. Blockage of UCHL1 led to insufficient decidualization and resultant decreased expression of cytokines CXCL12, IL-15, TGF-β which were critical for generation of decidual NK cells (dNKs), whereas UCHL1 overexpression enhanced decidualization accompanied by increase in dNKs. Mechanistically, the promotion of UCHL1 on decidualization was dependent on its deubiquitinating activity, and intervention of UCHL1 inhibited the activation of JAK2/STAT3 signaling pathway, resulting in aberrant decidualization and decreased production of cytokines associated with dNKs modulation. Furthermore, we found that inhibition of UCHL1 also disrupted the decidualization in mice and eventually caused adverse pregnancy outcome. Conclusions UCHL1 plays significant roles in decidualization and dNKs modulation during pregnancy in both humans and mice. Its deficiency indicates a poor pregnancy outcome due to defective decidualization, making UCHL1 a potential target for the diagnosis and treatment of miscarriage. Graphical Abstrac
Effects and mechanisms of endocrine disruptor bisphenol AF on male reproductive health: A mini review
Bisphenol AF (BPAF), an analogue of bisphenol A (BPA), is commonly found in manufacturing industries and known for its endocrine-disrupting properties. Despite potential similarities in adverse effects with BPA, limited toxicological data exist specifically for BPAF and its impact on male reproductive physiology. This mini-review aims to elucidate the influence of BPAF on the male reproductive system, focusing on estrogenic effects, effects on the hypothalamus-pituitary-gonad (HPG) axis, steroidogenesis, spermatogenesis, and transgenerational reproductive toxicity. Additionally, we outline the current insights into the potential mechanisms underlying BPAF-induced male reproductive disorders. BPAF exposure, either directly or maternally, has been associated with detrimental effects on male reproductive functions, including damage to the blood-testis barrier (BTB) structure, disruptions in steroidogenesis, testis dysfunction, decreased anogenital distance (AGD), and defects in sperm and semen quality. Mechanistically, altered gene expression in the HPG axis, deficits in the steroidogenesis pathway, activation of the aromatase pathway, cascade effects induced by reactive oxygen species (ROS), activation of ERK signaling, and immunological responses collectively contribute to the adverse effects of BPAF on the male reproductive system. Given the high prevalence of male reproductive issues and infertility, along with the widespread environmental distribution of bisphenols, this study provides valuable insights into the negative effects of BPAF. The findings underscore the importance of considering the safe use of this compound, urging further exploration and regulatory attention to decrease potential risks associated with BPAF exposure
Organic Fluorescent Probes for Monitoring Micro-Environments in Living Cells and Tissues
As a vital parameter in living cells and tissues, the micro-environment is crucial for the living organisms. Significantly, organelles require proper micro-environment to achieve normal physiological processes, and the micro-environment in organelles can reflect the state of organelles in living cells. Moreover, some abnormal micro-environments in organelles are closely related to organelle dysfunction and disease development. So, visualizing and monitoring the variation of micro-environments in organelles is helpful for physiologists and pathologists to study the mechanisms of the relative diseases. Recently, a large variety of fluorescent probes was developed to study the micro-environments in living cells and tissues. However, the systematic and comprehensive reviews on the organelle micro-environment in living cells and tissues have rarely been published, which may hinder the research progress in the field of organic fluorescent probes. In this review, we will summarize the organic fluorescent probes for monitoring the microenvironment, such as viscosity, pH values, polarity, and temperature. Further, diverse organelles (mitochondria, lysosome, endoplasmic reticulum, cell membrane) about microenvironments will be displayed. In this process, the fluorescent probes about the “off-on” and ratiometric category (the diverse fluorescence emission) will be discussed. Moreover, the molecular designing, chemical synthesis, fluorescent mechanism, and the bio-applications of these organic fluorescent probes in cells and tissues will also be discussed. Significantly, the merits and defects of current microenvironment-sensitive probes are outlined and discussed, and the development tendency and challenges for this kind of probe are presented. In brief, this review mainly summarizes some typical examples and highlights the progress of organic fluorescent probes for monitoring micro-environments in living cells and tissues in recent research. We anticipate that this review will deepen the understanding of microenvironment in cells and tissues and facilitate the studies and development of physiology and pathology