13 research outputs found

    Research on 3D Design of High-Load Counter-Rotating Compressor Based on Aerodynamic Optimization and CFD Coupling Method

    No full text
    In view of the flow instability problem caused by the strong shock wave and secondary flow in the channel of the high-load counter-rotating compressor, this paper adopts the design method of coupling aerodynamic optimization technology and CFD and establishes a three-dimensional aerodynamic optimization design platform for the blade channel based on an artificial neural network and genetic algorithm. The aerodynamic optimization design and internal flow-field diagnosis of a high-load counter-rotating compressor with a 1/2 + 1 aerodynamic configuration are carried out. The research indicates that the optimized blade channel can drive and adjust the flow better, and the expected supercharging purpose and efficient energy conversion process are achieved by controlling the intensity of the shock wave and secondary flow in the channel. The total pressure ratio at the design point of the compressor exceeds 2.9, the adiabatic efficiency reaches 87%, and the aerodynamic performance is excellent at the off-design condition, which is on the advanced design level of the same type of axial compressor. The established aerodynamic optimization design platform has important practical engineering applications for the development of high thrust-to-weight ratio aero-engine compression systems

    Research on Aerodynamic Design of an End Wall Based on a Quasi-3D Optimization Method

    No full text
    To investigate the effects of different passage structures on the aerodynamic performance of the transonic fans, this paper develops a reliable and practical quasi-3D optimization method for the hub based on the experimental data of Stage 67. In the method, the hub profile of Stage 67 can be optimized without changing the geometrical data of the blades. The optimization results show that stream tube diffusion characteristics depend on the hub profile’s curvature in the boundary layer near the hub. In the front part of the hub, the end wall with a concave construction can enhance the expansion of the stream tubes near the root of the rotor blade, which helps control the diffusion flow of viscous fluid effectively to decrease the low-energy fluid’s energy degradation and radial secondary flow in the boundary layer. In the latter part of the hub, the end wall with a convex construction facilitates the shrinkage of stream tubes to decrease the secondary flow loss and separated flow loss by controlling the separation of the boundary layer efficiently. This construction of the hub profile is beneficial to promote the aerodynamic performance of a transonic fan

    A Nanoscale Structure Based on an MIM Waveguide Coupled with a Q Resonator for Monitoring Trace Element Concentration in the Human Body

    No full text
    In this study, a nano-refractive index sensor is designed that consists of a metal–insulator–metal (MIM) waveguide with a stub-1 and an orthogon ring resonator (ORR) with a stub-2. The finite element method (FEM) was used to analyze the transmission characteristics of the system. We studied the cause and internal mechanism of Fano resonance, and optimized the transmission characteristics by changing various parameters of the structure. In our experimental data, the suitable sensitivity could reach 2260 nm/RIU with a figure of merit of 211.42. Furthermore, we studied the detection of the concentration of trace elements (such as Na+) of the structure in the human body, and its sensitivity reached 0.505 nm/mgdL−1. The structure may have other potential applications in sensors

    Adsorption of Uranium(VI) from a Simulated Saline Solution by Alkali-Activated Leather Waste

    No full text
    A porous adsorbent was prepared from leather waste by activation with alkali. The adsorbent, alkali-activated leather waste (AALW), was applied to adsorb uranium­(VI) and characterized by scanning electron microscopy, energy-dispersive X-ray detection, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The influence of the pH, initial uranium­(VI) concentration, temperature, and contact time on the adsorption of uranium­(VI) was systematically investigated. The adsorption of uranium­(VI) on AALW obeyed the Langmuir isotherm model and was attributed to ion exchange and complexation coordination. Thermodynamic and kinetic studies showed that the adsorption process was spontaneous and endothermic, and it reached adsorption equilibrium in 360 min. Moreover, the selective adsorption of uranium­(VI) from an aqueous solution containing coexisting ions and adsorption of trace uranium­(VI) from a simulated high-salinity environment showed that AALW had not only a strong affinity but a high selectivity for uranium­(VI)

    Refractive Index and Alcohol-Concentration Sensor Based on Fano Phenomenon

    No full text
    A novel nano-refractive index sensor based on the Fano resonance phenomenon is proposed in this paper. The sensor consists of the metal-insulator-metal (MIM) waveguide and a V-ring cavity with a groove (VRCG). We analyzed the performance of the nanoscale sensor using the finite element method. The simulation results show that the asymmetry of the geometric structure itself is the main factor leading to Fano resonance splitting. In Fano splitting mode, the Fano bandwidth of the system can be significantly reduced when the sensor sensitivity is slightly reduced, so that the figure of merit (FOM) of the sensor can be substantially improved. Based on the above advantages, the sensor’s sensitivity in this paper is as high as 2765 nm/RIU, FOM = 50.28. In addition, we further applied the sensor to alcohol concentration detection. The effect is good, and the sensitivity achieves about 150. This type of sensor has a bright future in the precision measurement of solution concentrations

    A Nanoscale Sensor Based on a Toroidal Cavity with a Built-In Elliptical Ring Structure for Temperature Sensing Application

    No full text
    In this article, a refractive index sensor based on Fano resonance, which is generated by the coupling of a metal–insulator–metal (MIM) waveguide structure and a toroidal cavity with a built-in elliptical ring (TCER) structure, is presented. The finite element method (FEM) was employed to analyze the propagation characteristics of the integral structure. The effects of refractive index and different geometric parameters of the structure on the sensing characteristics were evaluated. The maximum sensitivity was 2220 nm/RIU with a figure of merit (FOM) of 58.7, which is the best performance level that the designed structure could achieve. Moreover, due to its high sensitivity and simple structure, the refractive index sensor can be applied in the field of temperature detection, and its sensitivity is calculated to be 1.187 nm/℃

    High-Property Refractive Index and Bio-Sensing Dual-Purpose Sensor Based on SPPs

    No full text
    A high-property plasma resonance-sensor structure consisting of two metal-insulator-metal (MIM) waveguides coupled with a transverse ladder-shaped nano-cavity (TLSNC) is designed based on surface plasmon polaritons. Its transmission characteristics are analyzed using multimode interference coupling mode theory (MICMT), and are simulated using finite element analysis (FEA). Meanwhile, the influence of different structural arguments on the performance of the structure is investigated. This study shows that the system presents four high-quality formants in the transmission spectrum. The highest sensitivity is 3000 nm/RIU with a high FOM* of 9.7 × 105. In addition, the proposed structure could act as a biosensor to detect the concentrations of sodium ions (Na+), potassium ions (K+), and the glucose solution with maximum sensitivities of 0.45, 0.625 and 5.5 nm/mgdL−1, respectively. Compared with other structures, the designed system has the advantages of a simple construction, a wide working band range, high reliability and easy nano-scale integration, providing a high-performance cavity choice for refractive index sensing and biosensing devices based on surface plasmons

    A Nano Refractive Index Sensing Structure for Monitoring Hemoglobin Concentration in Human Body

    No full text
    This paper proposes a nanosensor structure consisting of a metal–insulator–metal (MIM) waveguide with a rectangular root and a double-ring (SRRDR) with a rectangular cavity. In this paper, the cause and internal mechanism of Fano resonance are investigated by the finite element method (FEM), and the transport characteristics are optimized by changing various parameters of the structure. The results show that the structure can achieve double Fano resonance. Due to the destructive disturbance between the wideband mode of the inverted rectangle on the bus waveguide and the narrowband mode of the SRRDR, the output spectrum of the system shows an obvious asymmetric Fano diagram, and the structural parameters of the sensor have a great influence on the Fano resonance. By changing the sensitive parameters, the optimal sensitivity of the refractive index nanosensor is 2280 nm/RIU, and the coefficient of excellence (FOM) is 76.7. In addition, the proposed high-sensitivity nanosensor will be used to detect hemoglobin concentration in blood, which has positive applications for biosensors and has great potential for future nanosensing and optical integration systems
    corecore