49 research outputs found

    Evaluating the impacts of climate change and land-use change on future droughts in northeast Thailand.

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this record. Data availability: Data can be accessed from the NERC EDS Environmental Information Data Centre. https://doi.org/10.5285/b11c040d-c3c0-43c5-a7c0-442b067dc526.The impacts of climate change (CC) on droughts are well documented, but the effects of land-use change (LUC) are poorly understood. This study compares the projected individual and combined impacts of these stressors on future droughts (2021-2050), with respect to baseline (1981-2010) in one of the major tributaries of the Mekong River. LUC impacts on hydrological droughts are minimal compared to CC, with the latter expected to shorten the recurrence interval of a 20-year return period event to every 14 years. Both CC and LUC have significant impacts on agricultural droughts with heightened sensitivity. 'Once in a Decade' agricultural droughts will be 40% (35%) longer and 88% (87%) more severe under the CC (LUC) scenario. Under both stressors, the events occurring every 20 years will be twice as frequent. Results highlight the intensification of future droughts and the urgency for actions to mitigate/adapt to climate change and manage land use. Future policy shall holistically address agricultural water management, sustainable land use management, and crop management to cope with future droughts. We recommend developing resilient agricultural practices, enhanced water resource management strategies, and incorporating drought risk into land-use planning to mitigate the compounded impacts of CC and LUC.National Research Council of ThailandNatural Environment Research Council (NERC

    A model for optimisation of water management in rice polders in Thailand

    No full text
    This paper presents a mathematical model for the determination of optimal values for the main components of water management systems in rice polders in Thailand. The aim of the water management system in a rice area is to create good growing conditions for the crops. Under the hydrological conditions of Thailand the average rainfall during the rainy season is more than enough for growing rice or other crops. However, during the dry season there is a very small amount of rainfall. Thus the farmers are confronted with two quite different conditions and water management has to deal with irrigation and drainage issues. The main components of the water management system in a rice polder are the water level in the canals, the percentage of open surface water, discharge capacity from the field and discharge capacity of the pumping station or sluice. A model has been developed that takes into account damage due to flooding and drought as well as construction and maintenance cost for irrigation and drainage systems based on the hydrological conditions. Optimising of such a water management system means determining the main components in such a way that the equivalent annual costs are minimal. A case study has been done for a rice polder in Suphanburi province. It was found that the polder water level for rice under rainfed conditions could be kept above ground level to minimise loss of water from the rice field, whereas under irrigated conditions the polder water level has to be kept below ground level to get good drainage condition

    Climate Change Vulnerability Assessment: Case of Coastal Cities in South East Asia

    No full text

    Flow Analysis Around a Submerged Groyne

    No full text
    corecore