8 research outputs found

    iTRAQ-Based Quantitative Proteomic Profiling of Staphylococcus aureus Under Different Osmotic Stress Conditions

    Get PDF
    Staphylococcus aureus (S. aureus) is an extremely halotolerant pathogenic bacterium with high osmotic stress tolerance, and it is frequently encountered in aquatic production and preservation. However, the mechanism underlying the extremely high osmotic stress tolerance of S. aureus remains unclear. In this study, the isobaric tags for relative and absolute quantification (iTRAQ) method was used to identify the differentially expressed proteins (DEPs) under different sodium chloride (NaCl) concentrations. Compared with the control group (0% NaCl), the 10 and 20% NaCl groups had 484 DEPs and 750 DEPs, respectively. Compared with the 10% NaCl group, the 20% NaCl group had 361 DEPs. Among the DEPs, proteins involved in fatty acid synthesis, proline/glycine betaine biosynthesis and transportation, stress tolerance, cell wall biosynthesis and the TCA cycle were upregulated, whereas proteins associated with biofilm formation and pathogenic infections were downregulated. The results obtained in this study indicate that under extremely high osmotic stress, modification of the cell membrane structure, increased biosynthesis and transportation of osmotic protectants, and redistribution of energy metabolism contribute to the osmotic stress tolerance of S. aureus, and the infectious ability of the bacteria may be limited. The aim of this study was to provide new insight into how S. aureus tolerates the high-salt conditions involved in aquatic production and preservation

    The Response and Survival Mechanisms of <i>Staphylococcus aureus</i> under High Salinity Stress in Salted Foods

    No full text
    Staphylococcus aureus (S. aureus) has a strong tolerance to high salt stress. It is a major reason as to why the contamination of S. aureus in salted food cannot be eradicated. To elucidate its response and survival mechanisms, changes in the morphology, biofilm formation, virulence, transcriptome, and metabolome of S. aureus were investigated. IsaA positively regulates and participates in the formation of biofilm. Virulence was downregulated to reduce the depletion of nonessential cellular functions. Inositol phosphate metabolism was downregulated to reduce the conversion of functional molecules. The MtsABC transport system was downregulated to reduce ion transport and signaling. Aminoacyl-tRNA biosynthesis was upregulated to improve cellular homeostasis. The betaine biosynthesis pathway was upregulated to protect the active structure of proteins and nucleic acids. Within a 10% NaCl concentration, the L-proline content was upregulated to increase osmotic stability. In addition, 20 hub genes were identified through an interaction analysis. The findings provide theoretical support for the prevention and control of salt-tolerant bacteria in salted foods

    Novel high-docosahexaenoic-acid tuna oil supplementation modulates gut microbiota and alleviates obesity in high-fat diet mice

    No full text
    Studies have documented the benefits of fish oil in different diseases because of its high n-3 polyunsaturated fatty acid content. However, these studies mostly used commercially available fish oil supplements with a ratio of 18/12 for eicosapentaenoic acid and docosahexaenoic acid (DHA). However, increasing DHA content for this commonly used ratio might bring out a varied metabolic effect, which have remained unclear. Thus, in this study, a novel tuna oil (TO) was applied to investigate the effect of high-DHA content on the alteration of the gut microbiota and obesity in high-fat diet mice. The results suggest that high-DHA TO (HDTO) supplementation notably ameliorates obesity and related lipid parameters and restores the expression of lipid metabolism-related genes. The benefits of TOs were derived from their modification of the gut microbiota composition and structure in mice. A high-fat diet triggered an increased Firmicutes/Bacteroidetes ratio that was remarkably restored by TOs. The number of obesity-promoting bacteria—Desulfovibrio, Paraeggerthella, Terrisporobacter, Millionella, Lachnoclostridium, Anaerobacterium, and Ruminiclostridium—was dramatically reduced. Desulfovibrio desulfuricans, Alistipes putredinis, and Millionella massiliensis, three dysbiosis-related species, were especially regulated by HDTO. Regarding the prevention of obesity, HDTO outperforms the normal TO. Intriguingly, HDTO feeding to HFD-fed mice might alter the arginine and proline metabolism of intestinal microbiota

    Gut microbiome and metabolome analyses reveal the protective effect of special high‐docosahexaenoic acid tuna oil on d‐galactose‐induced aging in mice

    No full text
    Abstract Aging is closely related to altered gut function and its microbiome composition. To elucidate the mechanisms involved in the preventive effect of special high‐docosahexaenoic acid tuna oil (HDTO) on senescence, the effects of different doses of HDTO on the gut microbiome and metabolome of d‐galactose‐induced aging mice were studied. Deferribacteres and Tenericutes and uridine might be used as indicator bacteria and characteristic metabolites to identify aging, respectively. HDTO markedly improved the impaired memory and antioxidant abilities induced by d‐galactose. At the phylum level, the abundance of Firmicutes and Tenericutes was significantly increased upon d‐galactose induction, while that of Bacteroidetes, Proteobacteria, and Deferribacteres was significantly decreased. At the genus level, the variation mainly presented as an increase in the abundance of the Firmicutes genera Ligilactobacillus, Lactobacillus, and Erysipelothrix, the decrease in the abundance of the Bacteroidetes genera Bacteroides and Alistipes, the Firmicutes genus Dielma, and the Deferribacteres genus Mucispirillum. HDTO supplementation reversed the alterations in the intestinal flora by promoting the proliferation of beneficial flora during the aging process; the metabolic pathways, such as glycine–serine–threonine metabolism, valine–leucine–isoleucine biosynthesis, and some metabolic pathways involved in uridine, were also partially restored. Furthermore, the correlation analysis illustrated an obvious correlation between gut microbiota, its metabolites, and aging‐related indices. Moreover, it is worth noting that the metabolic regulation by dietary intervention varied with different HDTO doses and did not present a simple additive effect; indeed, each dose showed a unique modulation mechanism

    Investigating of the microbial communities in a red circle disease of sea cucumber based on metagenomic sequencing

    No full text
    Diseases in aquaculture restrict the survival and development of Apostichopus japonicus, one of the most important Chinese marine culture species. A novel disease, named ''red circle'' disease, is frequently observed in sea cucumber seedling ponds and results in the death of sea cucumbers. No information about this disease in A. japonicus is available. In this study, we investigated the whole microbial community structure and predicted microbial functional profiles in ''red circle'' disease affecting sea cucumbers through metagenomics. Metataxonomic analysis of ''red circle'' samples showed different domains, namely, bacteria (71.39%), virus (5.11%), archaea (0.15%), eukaryotes (0.06%), and some unclassified microbiota (23.29%). Proteobacteria was the most abundant phylum (42.88%), followed by Bacteroidetes (3.30%), Viruses_noname (3.12%), Verrucomicrobia (2.99%), Planctomycetes (2.67%), and Viruses_unclassified (1.99%). The species belong to genus Vibrio, which accounted for 4.51% of the microbiota. Vibrio alginolyticus was the most abundant species of genus Vibrio in the ''red circle'' samples, followed by Vibrio diabolicus, Vibrio parahaemolyticus, Vibrio cholerae, and Vibrio tubiashii. Functional analysis of ''red circle'' samples metagenome revealed the genes for the metabolism and environmental information processing of a wide range of bioactive compounds, including amino acids and carbohydrates. Results of our study provides insight into the ''red circle'' disease and microbial community in A. japonicus seedling ponds and widens our understanding of this new disease

    Structural and Functional Insights into the Roles of Potential Metal-Binding Sites in Apostichopus japonicus Ferritin

    No full text
    Ferritin is widely acknowledged as a conservative iron storage protein found in almost all living kingdoms. Apostichopus japonicus (Selenka) is among the oldest echinoderm fauna and has unique regenerative potential, but the catalytic mechanism of iron oxidation in A. japonicus ferritin (AjFER) remains elusive. We previously identified several potential metal-binding sites at the ferroxidase center, the three- and four-fold channels in AjFER. Herein, we prepared AjFER, AjFER-E25A/E60A/E105A, AjFER-D129A/E132A, and AjFER-E168A mutants, investigated their structures, and functionally characterized these ferritins with respect to Fe2+ uptake using X-ray techniques together with biochemical analytical methods. A crystallographic model of the AjFER-D129A/E132A mutant, which was solved to a resolution of 1.98 &Aring;, suggested that the substitutions had a significant influence on the quaternary structure of the three-fold channel compared to that of AjFER. The structures of these ferritins in solution were determined based on the molecular envelopes of AjFER and its variants by small-angle X-ray scattering, and the structures were almost consistent with the characteristics of well-folded and globular-shaped proteins. Comparative biochemical analyses indicated that site-directed mutagenesis of metal-binding sites in AjFER presented relatively low rates of iron oxidation and thermostability, as well as weak iron-binding affinity, suggesting that these potential metal-binding sites play critical roles in the catalytic activity of ferritin. These findings provide profound insight into the structure&ndash;function relationships related to marine invertebrate ferritins
    corecore