4,984 research outputs found

    Saffman-Taylor fingers with kinetic undercooling

    Get PDF
    The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularisation on the interface is not provided by surface tension, but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalise high velocities and prevent blow-up of the unregularised solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this 'selection' of 1/2 by kinetic undercooling is qualitatively similar to the well-known analogue with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analogue with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension, and numerically taking the limit that the surface tension vanishes.Comment: 10 pages, 6 figures, accepted for publication by Physical Review

    Computing equilibrium states of cholesteric liquid crystals in elliptical channels with deflation algorithms

    Full text link
    We study the problem of a cholesteric liquid crystal confined to an elliptical channel. The system is geometrically frustrated because the cholesteric prefers to adopt a uniform rate of twist deformation, but the elliptical domain precludes this. The frustration is resolved by deformation of the layers or introduction of defects, leading to a particularly rich family of equilibrium configurations. To identify the solution set, we adapt and apply a new family of algorithms, known as deflation methods, that iteratively modify the free energy extremisation problem by removing previously known solutions. A second algorithm, deflated continuation, is used to track solution branches as a function of the aspect ratio of the ellipse and preferred pitch of the cholesteric.Comment: 9 pages, 6 figure

    Hydrogen-atom Attack on Phenol and Toluene is \u3cem\u3eortho\u3c/em\u3e-directed

    Get PDF
    The reaction of H + phenol and H/D + toluene has been studied in a supersonic expansion after electric discharge. The (1 + 1′) resonance-enhanced multiphoton ionization (REMPI) spectra of the reaction products, at m/z = parent + 1, or parent + 2 amu, were measured by scanning the first (resonance) laser. The resulting spectra are highly structured. Ionization energies were measured by scanning the second (ionization) laser, while the first laser was tuned to a specific transition. Theoretical calculations, benchmarked to the well-studied H + benzene → cyclohexadienyl radical reaction, were performed. The spectrum arising from the reaction of H + phenol is attributed solely to the ortho-hydroxy-cyclohexadienyl radical, which was found in two conformers (syn and anti). Similarly, the reaction of H/D + toluene formed solely the ortho isomer. The preference for the ortho isomer at 100–200 K in the molecular beam is attributed to kinetic, not thermodynamic effects, caused by an entrance channel barrier that is ∼5 kJ mol−1 lower for ortho than for other isomers. Based on these results, we predict that the reaction of H + phenol and H + toluene should still favour the ortho isomer under elevated temperature conditions in the early stages of combustion (200–400 °C)

    THE RELATIONSHIP BETWEEN MUSCULOSKELETAL STRENGTH, PHYSIOLOGICAL CHARACTERISTICS, AND KNEE KINESTHESIA FOLLOWING FATIGUING EXERCISE

    Get PDF
    Fatiguing exercise may result in impaired functional joint stability and increased risk of unintentional injury. While there are several musculoskeletal and physiological characteristics related to fatigue onset, their relationship with proprioceptive changes following fatigue has not been examined. The purpose of this study was to establish the relationship between musculoskeletal and physiological characteristics and changes in proprioception, measured by threshold to detect passive motion (TTDPM), following fatiguing exercise. Twenty, physically active females participated (age: 28.65 ± 5.6 years, height: 165.6 ± 4.3 cm, weight: 61.8 ± 8.0 kg, BMI: 22.5± 2.3 kg/m2, BF: 23.3 ± 5.4%). During Visit 1, subjects completed an exercise history and 24-hour dietary questionnaire, and body composition, TTDPM familiarization, isokinetic knee strength, and maximal oxygen uptake/lactate threshold assessments. During Visit 2, subjects completed TTDPM and isometric knee strength testing prior to and following a fatiguing exercise protocol. Wilcoxon signed rank tests determined TTDPM and isometric knee strength changes from pre- to post- fatigue. Spearman’s rho correlation coefficients determined the relationship between strength and physiological variables with pre- to post-fatigue changes in TTDPM and with pre-fatigue and post-fatigue TTDPM in extension and flexion (α=0.05). No significant differences were demonstrated from pre-fatigue to post-fatigue TTDPM despite a significant decrease in isometric knee flexion strength (P<0.01) and flexion/extension ratio (P<0.05) following fatigue. No significant correlations were observed between strength or physiological variables and changes in TTDPM from pre- to post-fatigue in extension or flexion. Flexion/extension ratio was significantly correlated with pre-fatigue TTDPM in extension (r=-0.231, P<0.05). Peak oxygen uptake was significantly correlated with pre-fatigue (r=-0.500, P<0.01) and post-fatigue (r=-0.520, P<0.05) TTDPM in extension. No significant relationships were demonstrated between musculoskeletal and physiological characteristics and changes in TTDPM following fatigue. The results suggest that highly trained individuals may have better proprioception, and that the high fitness level of subjects in this investigation may have contributed to absence of TTDPM deficits following fatigue despite reaching a high level of perceptual and physiological fatigue. Future studies should consider various subject populations, other musculoskeletal strength characteristics, and different modalities of proprioception to determine the most important contributions to proprioceptive changes following fatigue

    The connection between mass, environment and slow rotation in simulated galaxies

    Get PDF
    Recent observations from integral field spectroscopy (IFS) indicate that the fraction of galaxies that are slow rotators, FSRF_{\rm SR}, depends primarily on stellar mass, with no significant dependence on environment. We investigate these trends and the formation paths of slow rotators (SRs) using the EAGLE and Hydrangea hydro-dynamical simulations. EAGLE consists of several cosmological boxes of volumes up to (100 Mpc)3(100\,\rm Mpc)^3, while Hydrangea consists of 2424 cosmological simulations of galaxy clusters and their environment. Together they provide a statistically significant sample in the stellar mass range 109.5 M⊙−1012.3 M⊙10^{9.5}\,\rm M_{\odot}-10^{12.3}\,\rm M_{\odot}, of 16,35816,358 galaxies. We construct IFS-like cubes and measure stellar spin parameters, λR\lambda_{\rm R}, and ellipticities, allowing us to classify galaxies into slow/fast rotators as in observations. The simulations display a primary dependence of FSRF_{\rm SR} on stellar mass, with a weak dependence on environment. At fixed stellar mass, satellite galaxies are more likely to be SRs than centrals. FSRF_{\rm SR} shows a dependence on halo mass at fixed stellar mass for central galaxies, while no such trend is seen for satellites. We find that ≈70\approx 70% of SRs at z=0z=0 have experienced at least one merger with mass ratio ≥0.1\ge 0.1, with dry mergers being at least twice more common than wet mergers. Individual dry mergers tend to decrease λR\lambda_{\rm R}, while wet mergers mostly increase it. However, 3030% of SRs at z=0z=0 have not experienced mergers, and those inhabit halos with median spins twice smaller than the halos hosting the rest of the SRs. Thus, although the formation paths of SRs can be varied, dry mergers and/or halos with small spins dominate.Comment: Accepted for publications in MNRAS (20 pages, 17 main body, 1.5 appendix). Changes include analysis of the orbital angular momentum effect on lambdaR and slightly different ellipticity calculatio

    The Role of Spokesperson in Ambiguous and Complex Crises: The CDC and Anthrax

    Get PDF
    This study evaluates the role of spokespersons in complex organizations facing ambiguous crises. Specifically, the Centers for Disease Control and Prevention’s (CDC) response to the anthrax crisis in 2001 is offered as a case study. A content analysis of the print media coverage of the anthrax crisis reveals that many claiming affiliation with the CDC spoke on behalf of the organization, resulting in what appeared to be a fragmented CDC message. The study concludes that the CDC’s failure to provide a central spokesperson contributed to the ambiguity of the situation

    Exoplanets or Dynamic Atmospheres? The Radial Velocity and Line Shape Variations of 51 Pegasi and Tau Bootis

    Full text link
    Because of our relatively low spectral resolution, we compare our observations with Gray's line bisector data by fitting observed line profiles to an expansion in terms of orthogonal (Hermite) functions. To obtain an accurate comparison, we model the emergent line profiles from rotating and pulsating stars, taking the instrumental point spread function into account. We describe this modeling process in detail. We find no evidence for line profile or strength variations at the radial velocity period in either 51 Peg or in Tau Boo. For 51 Peg, our upper limit for line shape variations with 4.23-day periodicity is small enough to exclude with 10 sigma confidence the bisector curvature signal reported by Gray & Hatzes; the bisector span and relative line depth signals reported by Gray (1997) are also not seen, but in this case with marginal (2 sigma) confidence. We cannot, however, exclude pulsations as the source of 51 Peg's radial velocity variation, because our models imply that line shape variations associated with pulsations should be much smaller than those computed by Gray & Hatzes; these smaller signals are below the detection limits both for Gray & Hatzes' data and for our own. Tau Boo's large radial velocity amplitude and v*sin(i) make it easier to test for pulsations in this star. Again we find no evidence for periodic line-shape changes, at a level that rules out pulsations as the source of the radial velocity variability. We conclude that the planet hypothesis remains the most likely explanation for the existing data.Comment: 44 pages, 19 figures, plain TeX, accepted to ApJS (companion to letter astro-ph/9712279

    Use of graphene as protection film in biological environments

    Get PDF
    Corrosion of metal in biomedical devices could cause serious health problems to patients. Currently ceramics coating materials used in metal implants can reduce corrosion to some extent with limitations. Here we proposed graphene as a biocompatible protective film for metal potentially for biomedical application. We confirmed graphene effectively inhibits Cu surface from corrosion in different biological aqueous environments. Results from cell viability tests suggested that graphene greatly eliminates the toxicity of Cu by inhibiting corrosion and reducing the concentration of Cu(2+) ions produced. We demonstrated that additional thiol derivatives assembled on graphene coated Cu surface can prominently enhance durability of sole graphene protection limited by the defects in graphene film. We also demonstrated that graphene coating reduced the immune response to metal in a clinical setting for the first time through the lymphocyte transformation test. Finally, an animal experiment showed the effective protection of graphene to Cu under in vivo condition. Our results open up the potential for using graphene coating to protect metal surface in biomedical application
    • …
    corecore