5 research outputs found

    Structure-Based Design of Dendritic Peptide Bolaamphiphiles for siRNA Delivery

    No full text
    Development of safe and effective delivery vectors is a critical challenge for the application of RNA interference (RNAi)-based biotechnologies. In this study we show the rational design of a series of novel dendritic peptide bolaamphiphile vectors that demonstrate high efficiency for the delivery of small interfering RNA (siRNA) while exhibiting low cytotoxicity and hemolytic activity. Systematic investigation into structure–property relationships revealed an important correlation between molecular design, self-assembled nanostructure, and biological activity. The unique bolaamphiphile architecture proved a key factor for improved complex stability and transfection efficiency. The optimal vector contains a fluorocarbon core and exhibited enhanced delivery efficiency to a variety of cell lines and improved serum resistance when compared to hydrocarbon analogues and lipofectamine RNAiMAX. In addition to introducing a promising new vector system for siRNA delivery, the structure–property relationships and “fluorocarbon effect” revealed herein offer critical insight for further development of novel materials for nucleic acid delivery and other biomaterial applications

    Multifunctional Dendronized Peptide Polymer Platform for Safe and Effective siRNA Delivery

    No full text
    In this study, we designed and synthesized a biodegradable dendronized polypeptide (denpol) platform for delivery of small interfering RNA (siRNA). The novel denpol architecture combines the multivalency of dendrimers and conformational flexibility of linear polymers for optimal siRNA binding. Multifunctional amino acids were incorporated onto the dendrons and the structure was tuned both systematically and combinatorially to select optimal vectors. By screening a focused library, we identified several denpols that can effectively deliver siRNA to NIH 3T3 cells in vitro and exhibit minimal toxicity. For comparison, the best-performing denpol showed significantly improved transfection efficiency over Lipofectamine in serum-containing media. Fluorescence intracellular trafficking studies indicated that amphiphilicity is important for cell uptake and that the buffering capacity of histidine facilitates endosomal membrane rupture and therefore enhances the transfection efficiency. The combination of high delivery efficiency in serum and low cytotoxicity suggests the denpol system as a promising new carrier for siRNA delivery

    Impact of Phosphorylation on the Mass Spectrometry Quantification of Intact Phosphoproteins

    No full text
    Protein phosphorylation is a ubiquitous and critical post-translational modification (PTM) involved in numerous cellular processes. Mass spectrometry (MS)-based proteomics has emerged as the preferred technology for protein identification, characterization, and quantification. Whereas ionization/detection efficiency of peptides in electrospray ionization (ESI)-MS are markedly influenced by the presence of phosphorylation, the physicochemical properties of intact proteins are assumed not to vary significantly due to the relatively smaller modification on large intact proteins. Thus, the ionization/detection efficiency of intact phosphoprotein is hypothesized not to alter appreciably for subsequent MS quantification. However, this hypothesis has never been rigorously tested. Herein, we systematically investigated the impact of phosphorylation on ESI-MS quantification of mono- and multiply phosphorylated proteins. We verified that a single phosphorylation did not appreciably affect the ESI-MS quantification of phosphoproteins as demonstrated in the enigma homolog isoform 2 (28 kDa) with monophosphorylation. Moreover, different ionization and desolvation parameters did not impact phosphoprotein quantification. In contrast to monophosphorylation, multiphosphorylation noticeably affected ESI-MS quantification of phosphoproteins likely due to differential ionization/detection efficiency between unphosphorylated and phosphorylated proteoforms as shown in the pentakis-phosphorylated β-casein (24 kDa)

    Nanoproteomics enables proteoform-resolved analysis of low-abundance proteins in human serum

    No full text
    Top-down proteomics can provide unique insights into the biological variations of protein biomarkers but detecting low-abundance proteins in body fluids remains challenging. Here, the authors develop a nanoparticle-based top-down proteomics approach enabling enrichment and detailed analysis of cardiac troponin I in human serum

    Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics

    No full text
    Abstract Protein complexes are highly dynamic entities that display substantial diversity in their assembly, post-translational modifications, and non-covalent interactions, allowing them to play critical roles in various biological processes. The heterogeneity, dynamic nature, and low abundance of protein complexes in their native states present challenges to study using conventional structural biology techniques. Here we develop a native nanoproteomics strategy for the enrichment and subsequent native top-down mass spectrometry (nTDMS) analysis of endogenous cardiac troponin (cTn) complex directly from human heart tissue. The cTn complex is enriched and purified using peptide-functionalized superparamagnetic nanoparticles under non-denaturing conditions to enable the isotopic resolution of cTn complex, revealing their complex structure and assembly. Moreover, nTDMS elucidates the stoichiometry and composition of the cTn complex, localizes Ca2+ binding domains, defines cTn-Ca2+ binding dynamics, and provides high-resolution mapping of the proteoform landscape. This native nanoproteomics strategy opens a paradigm for structural characterization of endogenous native protein complexes
    corecore