55 research outputs found

    The Dwarf Galaxy Population at z ∼ 0.7: A Catalog of Emission Lines and Redshifts from Deep Keck Observations

    Get PDF
    We present a catalog of spectroscopically measured redshifts over 0<z<20 < z < 2 and emission line fluxes for 1440 galaxies. The majority (\sim65\%) of the galaxies come from the HALO7D survey, with the remainder from the DEEPwinds program. This catalog includes redshifts for 646 dwarf galaxies with log(M/M)<9.5\log(M_{\star}/M_{\odot}) < 9.5. 810 catalog galaxies did not have previously published spectroscopic redshifts, including 454 dwarf galaxies. HALO7D used the DEIMOS spectrograph on the Keck II telescope to take very deep (up to 32 hours exposure, with a median of \sim7 hours) optical spectroscopy in the COSMOS, EGS, GOODS-North, and GOODS-South CANDELS fields, and in some areas outside CANDELS. We compare our redshift results to existing spectroscopic and photometric redshifts in these fields, finding only a 1\% rate of discrepancy with other spectroscopic redshifts. We measure a small increase in median photometric redshift error (from 1.0\% to 1.3\%) and catastrophic outlier rate (from 3.5\% to 8\%) with decreasing stellar mass. We obtained successful redshift fits for 75\% of massive galaxies, and demonstrate a similar 70-75\% successful redshift measurement rate in 8.5<log(M/M)<9.58.5 < \log(M_{\star}/M_{\odot}) < 9.5 galaxies, suggesting similar survey sensitivity in this low-mass range. We describe the redshift, mass, and color-magnitude distributions of the catalog galaxies, finding HALO7D galaxies representative of CANDELS galaxies up to \textit{i}-band magnitudes of 25. The catalogs presented will enable studies of star formation (SF), the mass-metallicity relation, SF-morphology relations, and other properties of the z0.7z\sim0.7 dwarf galaxy population.Comment: 23 pages, 19 Figures, updated to version accepted by ApJ

    PEARLS: A Potentially Isolated Quiescent Dwarf Galaxy with a TRGB Distance of 31 Mpc

    Full text link
    A wealth of observations have long suggested that the vast majority of isolated classical dwarf galaxies (M=107M_*=10^7-10910^9 M_\odot) are currently star-forming. However, recent observations of the large abundance of "Ultra-Diffuse Galaxies" beyond the reach of previous large spectroscopic surveys suggest that our understanding of the dwarf galaxy population may be incomplete. Here we report the serendipitous discovery of an isolated quiescent dwarf galaxy in the nearby Universe, which was imaged as part of the PEARLS GTO program. Remarkably, individual red-giant branch stars are visible in this near-IR imaging, suggesting a distance of 3131 Mpc, and a wealth of archival photometry point to an sSFR of 2×10122\times10^{-12} yr1^{-1}. Spectra obtained with the Lowell Discovery Telescope find a recessional velocity consistent with the Hubble Flow and >1500{>}1500 km/s separated from the nearest massive galaxy in SDSS, suggesting that this galaxy was either quenched from internal mechanisms or had a very high-velocity interaction with a nearby massive galaxy in the past. This analysis highlights the possibility that many nearby quiescent dwarf galaxies are waiting to be discovered and that JWST has the potential to identify them.Comment: Submitted to ApJ Letters. Comments welcome

    JWST NIRCam Photometry: A Study of Globular Clusters Surrounding Bright Elliptical Galaxy VV 191a at z=0.0513

    Full text link
    James Webb Space Telescope NIRCam images have revealed 443 globular cluster (GC) candidates around the z=0.0513z=0.0513 elliptical galaxy VV 191a. NIRCam broadband observations are made at 0.9-4.5 μ\mum using filters F090W, F150W, F356W, and F444W. Using photometry, the data is analyzed to present color-magnitude diagrams (CMDs) that suggest a fairly uniform population of GCs. Color histograms show a unimodal color distribution that is well fit by a single Gaussian, using color to primarily trace the metallicity. The findings show the sample's globular cluster luminosity function (GCLF) does not reach the turnover value and is, therefore, more luminous than what is typically expected, with an absolute AB magnitude, MF090W=8.70M_{F090W} = -8.70 mag, reaching within nearly one magnitude of the classical turnover value. We attribute this to the completeness in the sample. Models show that the mass estimate of the GCs detected tends to be more massive, reaching upward of 107M\simeq 10^7 M_{\odot}. However, the results show that current GC models do not quite align with the data. We find that the models appear to be bluer than the JWST data in the reddest (F356W-F444W) filters and redder than the data in the bluest (F090W-F150W) filters and may need to be revised to improve the modeling of near-IR colors of old, metal-poor stellar populations.Comment: 11 pages, 7 figure

    SKYSURF-4: Panchromatic HST All-Sky Surface-Brightness Measurement Methods and Results

    Full text link
    The diffuse, unresolved sky provides most of the photons that the Hubble Space Telescope (HST) receives, yet remains poorly understood. HST Archival Legacy program SKYSURF aims to measure the 0.2-1.6 μ\mum sky surface brightness (sky-SB) from over 140,000 HST images. We describe a sky-SB measurement algorithm designed for SKYSURF that is able to recover the input sky-SB from simulated images to within 1% uncertainty. We present our sky-SB measurements estimated using this algorithm on the entire SKYSURF database. Comparing our sky-SB spectral energy distribution (SED) to measurements from the literature shows general agreements. Our SKYSURF SED also reveals a possible dependence on Sun angle, indicating either non-isotropic scattering of solar photons off interplanetary dust or an additional component to Zodiacal Light. Finally, we update Diffuse Light limits in the near-IR based on the methods from Carleton et al. (2022), with values of 0.009 MJy sr1^{-1} (22 nW m2^{-2} sr1^{-1}) at 1.25 μ\mum, 0.015 MJy sr1^{-1} (32 nW m2^{-2} sr1^{-1}) at 1.4 μ\mum, and 0.013 MJy sr1^{-1} (25 nW m2^{-2} sr1^{-1}) at 1.6 μ\mum. These estimates provide the most stringent all-sky constraints to date in this wavelength range. SKYSURF sky-SB measurements are made public on the official SKYSURF website and will be used to constrain Diffuse Light in future papers.Comment: Revised based on helpful comments from the reviewer, and accepted to AJ on April 12th, 2023. Main paper: 18 pages, 9 figures, 4 tables. Appendices: 16 pages, 10 figures, 1 table. Main results shown in Figure 7 and Table

    PEARLS: Low Stellar Density Galaxies in the El Gordo Cluster Observed with JWST

    Full text link
    A full understanding of how unusually large "Ultra Diffuse Galaxies" (UDGs) fit into our conventional understanding of dwarf galaxies remains elusive, despite the large number of objects identified locally. A natural extension of UDG research is the study of similar galaxies at higher redshift to establish how their properties may evolve over time. However, this has been a challenging task given how severely systematic effects and cosmological surface brightness dimming inhibit our ability to study low-surface brightness galaxies at high-zz. Here, we present an identification of low stellar surface density galaxies (LDGs), likely the progenitors of local UDGs, at moderate redshift with deep near-IR observations of the El Gordo cluster at z=0.87z = 0.87 with JWST. By stacking 8 NIRCAM filters, we are able to achieve an apparent surface brightness sensitivity of 24.5924.59 mag arcsec2^{-2}, faint enough to be complete to the bright end of the LDG population. Our analysis identifies significant differences between this population and local UDGs, such as their color and size distributions, which suggest that UDG progenitors are bluer and more extended at high-zz than at z=0z = 0. This suggests that multiple mechanisms are responsible for UDG formation and that prolonged transformation of cluster dwarfs is not a primary UDG formation mechanism at high-zz. Furthermore, we find a slight overabundance of LDGs in El Gordo, and, in contrast to findings in local clusters, our analysis does not show a deficit of LDGs in the center of El Gordo, implying that tidal destruction of LDGs is significant between z=0.87z = 0.87 and z=0z = 0.Comment: Resubmitted to ApJ after minor revision

    Modern optical astronomy: technology and impact of interferometry

    Get PDF
    The present `state of the art' and the path to future progress in high spatial resolution imaging interferometry is reviewed. The review begins with a treatment of the fundamentals of stellar optical interferometry, the origin, properties, optical effects of turbulence in the Earth's atmosphere, the passive methods that are applied on a single telescope to overcome atmospheric image degradation such as speckle interferometry, and various other techniques. These topics include differential speckle interferometry, speckle spectroscopy and polarimetry, phase diversity, wavefront shearing interferometry, phase-closure methods, dark speckle imaging, as well as the limitations imposed by the detectors on the performance of speckle imaging. A brief account is given of the technological innovation of adaptive-optics (AO) to compensate such atmospheric effects on the image in real time. A major advancement involves the transition from single-aperture to the dilute-aperture interferometry using multiple telescopes. Therefore, the review deals with recent developments involving ground-based, and space-based optical arrays. Emphasis is placed on the problems specific to delay-lines, beam recombination, polarization, dispersion, fringe-tracking, bootstrapping, coherencing and cophasing, and recovery of the visibility functions. The role of AO in enhancing visibilities is also discussed. The applications of interferometry, such as imaging, astrometry, and nulling are described. The mathematical intricacies of the various `post-detection' image-processing techniques are examined critically. The review concludes with a discussion of the astrophysical importance and the perspectives of interferometry.Comment: 65 pages LaTeX file including 23 figures. Reviews of Modern Physics, 2002, to appear in April issu

    Searching for Intragroup Light in Deep U-band Imaging of the COSMOS Field

    Full text link
    We present the results of deep, ground based U-band imaging with the Large Binocular Telescope of the Cosmic Evolution Survey (COSMOS) field as part of the near-UV imaging program, UVCANDELS. We utilize a seeing sorted stacking method along with night-to-night relative transparency corrections to create optimal depth and optimal resolution mosaics in the U-band, which are capable of reaching point source magnitudes of AB 26.5 mag at 3 sigma. These ground based mosaics bridge the wavelength gap between the HST WFC3 F27W and ACS F435W images and are necessary to understand galaxy assembly in the last 9-10 Gyr. We use the depth of these mosaics to search for the presence of U-band intragroup light (IGrL) beyond the local Universe. Regardless of how groups are scaled and stacked, we do not detect any U-band IGrL to unprecedented U-band depths of 29.1-29.6 mag/arcsec2, which corresponds to an IGrL fraction of less than 1% of the total group light. This stringent upper limit suggests that IGrL does not contribute significantly to the Extragalactic Background Light at short wavelengths. Furthermore, the lack of UV IGrL observed in these stacks suggests that the atomic gas observed in the intragroup medium (IGrM) is likely not dense enough to trigger star formation on large scales. Future studies may detect IGrL by creating similar stacks at longer wavelengths or by pre-selecting groups which are older and/or more dynamically evolved similar to past IGrL observations of compact groups and loose groups with signs of gravitational interactions.Comment: Accepted to PAS

    Are JWST/NIRCam color gradients in the lensed z=2.3 dusty star-forming galaxy El Anzuelo due to central dust attenuation or inside-out galaxy growth?

    Full text link
    Gradients in the mass-to-light ratio of distant galaxies impede our ability to characterize their size and compactness. The long-wavelength filters of JWSTJWST's NIRCam offer a significant step forward. For galaxies at Cosmic Noon (z2z\sim2), this regime corresponds to the rest-frame near-infrared, which is less biased towards young stars and captures emission from the bulk of a galaxy's stellar population. We present an initial analysis of an extraordinary lensed dusty star-forming galaxy (DSFG) at z=2.3z=2.3 behind the El GordoEl~Gordo cluster (z=0.87z=0.87), named El AnzueloEl~Anzuelo ("The Fishhook") after its partial Einstein-ring morphology. The FUV-NIR SED suggests an intrinsic star formation rate of 812+7 M yr181^{+7}_{-2}~M_\odot~{\rm yr}^{-1} and dust attenuation AV1.6A_V\approx 1.6, in line with other DSFGs on the star-forming main sequence. We develop a parametric lens model to reconstruct the source-plane structure of dust imaged by the Atacama Large Millimeter/submillimeter Array, far-UV to optical light from HubbleHubble, and near-IR imaging with 8 filters of JWSTJWST/NIRCam, as part of the Prime Extragalactic Areas for Reionization and Lensing Science (PEARLS) program. The source-plane half-light radius is remarkably consistent from 14.5 μ\sim 1-4.5~\mum, despite a clear color gradient where the inferred galaxy center is redder than the outskirts. We interpret this to be the result of both a radially-decreasing gradient in attenuation and substantial spatial offsets between UV- and IR-emitting components. A spatial decomposition of the SED reveals modestly suppressed star formation in the inner kiloparsec, which suggests that we are witnessing the early stages of inside-out quenching.Comment: 29 pages, 11 figures, 5 tables. Accepted for publication in Ap
    corecore