5 research outputs found

    Isolating the Spectral Signatures of Individual Sites in Water Networks Using Vibrational Double-Resonance Spectroscopy of Cluster Isotopomers

    No full text
    We report the spectral signatures of water molecules occupying individual sites in an extended H-bonding network using mass-selective, double-resonance vibrational spectroscopy of isotopomers. The scheme is demonstrated on the water heptamer anion, (H<sub>2</sub>O)<sub>7</sub>¯, where we first randomly incorporate a single, intact D<sub>2</sub>O molecule to create an ensemble of isotopomers. The correlation between the two OD stretching frequencies and that of the intramolecular DOD bending transition is then revealed by photochemical modulation of the isotopomer population responsible for particular features in the vibrational spectrum. The observed patterns confirm the assignment of the dominant doublet, appearing most red-shifted from the free OD stretch, to a single water molecule attached to the network in a double H-bond acceptor (AA) arrangement. The data also reveal the unanticipated role of accidentally overlapping transitions, where the highest-energy OD stretch, for example, occurs with its companion OD stretch obscured by the much stronger AA feature

    Bottom-Up View of Water Network-Mediated CO<sub>2</sub> Reduction Using Cryogenic Cluster Ion Spectroscopy and Direct Dynamics Simulations

    No full text
    The transition states of a chemical reaction in solution are generally accessed through exchange of thermal energy between the solvent and the reactants. As such, an ensemble of reacting systems approaches the transition state configuration of reactant and surrounding solvent in an incoherent manner that does not lend itself to direct experimental observation. Here we describe how gas-phase cluster chemistry can provide a detailed picture of the microscopic mechanics at play when a network of six water molecules mediates the trapping of a highly reactive “hydrated electron” onto a neutral CO<sub>2</sub> molecule to form a radical anion. The exothermic reaction is triggered from a metastable intermediate by selective excitation of either the reactant CO<sub>2</sub> or the water network, which is evidenced by the evaporative decomposition of the product cluster. Ab initio molecular dynamics simulations of energized CO<sub>2</sub>·(H<sub>2</sub>O)<sub>6</sub><sup>–</sup> clusters are used to elucidate the nature of the network deformations that mediate intracluster electron capture, thus revealing the detailed solvent fluctuations implicit in the Marcus theory for electron-transfer kinetics in solution

    Inside versus Outside: Ion Redistribution in Nitric Acid Reacted Sea Spray Aerosol Particles as Determined by Single Particle Analysis

    No full text
    Single particle analysis of individual sea spray aerosol particles shows that cations (Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, and Ca<sup>2+</sup>) within individual particles undergo a spatial redistribution after heterogeneous reaction with nitric acid, along with the development of a more concentrated layer of organic matter at the surface of the particle. These data suggest that specific ion and aerosol pH effects play an important role in aerosol particle structure in ways that have not been previously recognized

    Heterogeneous Reactivity of Nitric Acid with Nascent Sea Spray Aerosol: Large Differences Observed between and within Individual Particles

    No full text
    Current climate and atmospheric chemistry models assume that all sea spray particles react as if they are pure NaCl. However, recent studies of sea spray aerosol particles have shown that distinct particle types exist (including sea salt, organic carbon, and biological particles) as well as mixtures of these and, within each particle type, there is a range of single-particle chemical compositions. Because of these differences, individual particles should display a range of reactivities with trace atmospheric gases. Herein, to address this, we study the composition of individual sea spray aerosol particles after heterogeneous reaction with nitric acid. As expected, a replacement reaction of chloride with nitrate is observed; however, there is a large range of reactivities spanning from no reaction to complete reaction between and within individual sea spray aerosol particles. These data clearly support the need for laboratory studies of individual, environmentally relevant particles to improve our fundamental understanding as to the properties that determine reactivity

    Size-Dependent Changes in Sea Spray Aerosol Composition and Properties with Different Seawater Conditions

    No full text
    A great deal of uncertainty exists regarding the chemical diversity of particles in sea spray aerosol (SSA), as well as the degree of mixing between inorganic and organic species in individual SSA particles. Therefore, in this study, single particle analysis was performed on SSA particles, integrating transmission electron microscopy with energy dispersive X-ray analysis and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy, with a focus on quantifying the relative fractions of different particle types from 30 nm to 1 μm. SSA particles were produced from seawater in a unique ocean-atmosphere facility equipped with breaking waves. Changes to the SSA composition and properties after the addition of biological (bacteria and phytoplankton) and organic material (ZoBell growth media) were probed. Submicrometer SSA particles could be separated into two distinct populations: one with a characteristic sea salt core composed primarily of NaCl and an organic carbon and Mg<sup>2+</sup> coating (SS-OC), and a second type consisting of organic carbon (OC) species which are more homogeneously mixed with cations and anions, but not chloride. SS-OC particles exhibit a wide range of sizes, compositions, morphologies, and distributions of elements within each particle. After addition of biological and organic material to the seawater, a change occurs in particle morphology and crystallization behavior associated with increasing organic content for SS-OC particles. The fraction of OC-type particles, which are mainly present below 180 nm, becomes dramatically enhanced with increased biological activity. These changes with size and seawater composition have important implications for atmospheric processes such as cloud droplet activation and heterogeneous reactivity
    corecore