176 research outputs found

    Stem cells for enhancing recovery after stroke: a review

    Get PDF
    The potential application for stem cell therapy is vast, and development for use in ischaemic stroke is still in its infancy. Access to stem cells for research is contentious; however, stem cells are obtainable from both animal and human. Despite a limited understanding of their mechanisms of action, clinical trials assessing stem cells in human stroke have been performed. Trials are also underway evaluating haematopoietic precursors mobilised with granulocyte-colony stimulating factor, an approach offering an autologous means of administrating stem cells for therapeutic purposes. This review summarises current knowledge in regard to stem cells and their potential for helping improve recovery after stroke

    A meta-analysis of remote ischaemic conditioning in experimental stroke

    Get PDF
    Remote ischaemic conditioning (RIC) is achieved by repeated transient ischaemia of a distant organ/limb and is neuroprotective in experimental ischaemic stroke. However, the optimal time and methods of administration are unclear. Systematic review identified relevant preclinical studies; two authors independently extracted data on infarct volume, neurological deficit, RIC method (administration time, site, cycle number, length of limb occlusion (dose)), species and quality. Data were analysed using random effects models; results expressed as standardised mean difference (SMD). In 57 publications incorporating 99 experiments (1406 rats, 101 mice, 14 monkeys), RIC reduced lesion volume in transient (SMD −2.0; 95% CI −2.38, −1.61; p

    Cannabinoids in experimental stroke: a systematic review and meta-analysis

    Get PDF
    Cannabinoids (CBs) show promise as neuroprotectants with some agents already licensed in humans for other conditions. We systematically reviewed CBs in preclinical stroke to guide further experimental protocols. We selected controlled studies assessing acute administration of CBs for experimental stroke, identified through systematic searches. Data were extracted on lesion volume, outcome and quality, and analyzed using random effect models. Results are expressed as standardized mean difference (SMD) with 95% confidence intervals (CIs). In all, 144 experiments (34 publications) assessed CBs on infarct volume in 1,473 animals. Cannabinoids reduced infarct volume in transient (SMD −1.41 (95% CI −1.71), −1.11) P<0.00001) and permanent (−1.67 (−2.08, −1.27), P<0.00001) ischemia and in all subclasses: endocannabinoids (−1.72 (−2.62, −0.82), P=0.0002), CB1/CB2 ligands (−1.75 (−2.19, −1.31), P<0.00001), CB2 ligands (−1.65 (−2.09, −1.22), P<0.00001), cannabidiol (−1.20 (−1.63, −0.77), P<0.00001), Δ9-tetrahydrocannabinol (−1.43 (−2.01, −0.86), P<0.00001), and HU-211 (−2.90 (−4.24, −1.56), P<0.0001). Early and late neuroscores significantly improved with CB use (−1.27 (−1.58, −0.95), P<0.00001; −1.63 (−2.64, −0.62), P<0.002 respectively) and there was no effect on survival. Statistical heterogeneity and publication bias was present, median study quality was 4 (range 1 to 6/8). Overall, CBs significantly reduced infarct volume and improve functional outcome in experimental stroke. Further studies in aged, female and larger animals, with other co-morbidities are required

    Editorial: Remote Ischemic Conditioning (Pre, Per, and Post) as an Emerging Strategy of Neuroprotection in Ischemic Stroke

    Get PDF
    EDITORIAL articleThis study was funded by Carlos III Health Institute and cofunded by European Union (ERDF A way to make Europe) Project (PI17-01725) and the RICORS Research Network to FP, NIH Funding (R01 NS099455, 1UO1NS113356, and R01 NS112511) to DH, Italian Ministry of Health - PRIN 2017CY3J3W to SB. French National Minsitry of Health Grant 2014 AOR13032 to FP, TE is the Chief Investigator for the Remote ischaemic conditioning after stroke trial (RECAST), RECAST-2, and RECAST-3 funded through the NIHR Efficacy and Mechanism Evaluation (EME) Programme, Award ID NIHR128240

    A novel transwell blood brain barrier model using primary human cells

    Get PDF
    © 2019 Stone, England and O’Sullivan. Structural alterations and breakdown of the blood brain barrier (BBB) is often a primary or secondary consequence of disease, resulting in brain oedema and the transport of unwanted substances into the brain. It is critical that effective in vitro models are developed to model the in vivo environment to aid in clinically relevant research, especially regarding drug screening and permeability studies. Our novel model uses only primary human cells and includes four of the key cells of the BBB: astrocytes, pericytes, brain microvascular endothelial cells (HBMEC) and neurons. We show that using a larger membrane pore size (3.0 μM) there is an improved connection between the endothelial cells, astrocytes and pericytes. Compared to a two and three cell model, we show that when neurons are added to HBMECs, astrocytes and pericytes, BBB integrity was more sensitive to oxygen-glucose deprivation evidenced by increased permeability and markers of cell damage. Our data also show that a four cell model responds faster to the barrier tightening effects of glucocorticoid dexamethasone, when compared to a two cell and three cell model. These data highlight the important role that neurons play in response to ischaemia, particularly how they contribute to BBB maintenance and breakdown. We consider that this model is more representative of the interactions at the neurovascular unit than other transwell models and is a useful method to study BBB physiology

    The effects of acute and sustained cannabidiol dosing for seven days on the haemodynamics in healthy men: A randomised controlled trial

    Get PDF
    © 2020 The British Pharmacological Society Background: In vivo studies show that cannabidiol (CBD) acutely reduces blood pressure (BP) in men. The aim of this study was to assess the effects of repeated CBD dosing on haemodynamics. Methods: Twenty-six healthy males were given CBD (600 mg) or placebo orally for seven days in a randomised, placebo-controlled, double-blind, parallel study (n = 13/group). Cardiovascular parameters were assessed at rest and in response to isometric exercise after acute and repeated dosing using Finometer®, Vicorder® and Duplex ultrasound. Results: Compared to placebo, CBD significantly reduced resting mean arterial pressure (P =.04, two-way ANOVA, mean difference (MD) –2 mmHg, 95% CI -3.6 to −0.3) after acute dosing, but not after repeated dosing. In response to stress, volunteers who had taken CBD had lower systolic BP after acute (P =.001, two-way ANOVA, MD −6 mmHg, 95% CI –10 to −1) and repeated (P =.02, two-way ANOVA, MD −5.7 mmHg, 95% CI –10 to −1) dosing. Seven days of CBD increased internal carotid artery diameter (MD +0.55 mm, P =.01). Within the CBD group, repeated dosing reduced arterial stiffness by day 7 (pulse wave velocity; MD −0.44 m/s, P =.05) and improved endothelial function (flow mediation dilatation, MD +3.5%, P =.02, n = 6 per group), compared to day 1. Conclusion: CBD reduces BP at rest after a single dose but the effect is lost after seven days of treatment (tolerance); however, BP reduction during stress persists. The reduction in arterial stiffness and improvements in endothelial function after repeated CBD dosing are findings that warrant further investigation in populations with vascular diseases

    Remote ischemic conditioning for stroke: A critical systematic review

    Get PDF
    Remote ischemic conditioning (RIC) is the application of brief periods of ischemia to an organ or tissue with the aim of inducing protection from ischemia in a distant organ. It was first developed as a cardioprotective strategy but has been increasingly investigated as a neuroprotective intervention. The mechanisms by which RIC achieves neuroprotection are incompletely understood. Preclinical studies focus on the hypothesis that RIC can protect the brain from ischemia reperfusion (IR) injury following the restoration of blood flow after occlusion of a large cerebral artery. However, increasingly, a role of chronic RIC (CRIC) is being investigated as a means of promoting recovery following an ischemic insult to the brain. The recent publication of two large, randomized control trials has provided promise that RIC could improve functional outcomes after acute ischemic stroke, and that there may be a role for CRIC in the prevention of recurrent stroke. Although less developed, there is also proof-of-concept to suggest that RIC may be used to reduce vasospasm after subarachnoid hemorrhage or improve cognitive outcomes in vascular dementia. As a cheap, well-tolerated and almost universally applicable intervention, the motivation for investigating possible benefit of RIC in patients with cerebrovascular disease is great. In this review, we shall review the current evidence for RIC as applied to cerebrovascular disease
    • …
    corecore