4 research outputs found

    Development of a Continuous Schotten–Baumann Route to an Acyl Sulfonamide

    No full text
    The development and scale-up of a synthetic route to tasisulam sodium (5-bromo-thiophene-2-sulfonic acid 2,4-dichlorobenzoylamide sodium salt, hereafter referred to as tasisulam) utilizing continuous Schotten–Baumann reaction conditions is disclosed. A new synthetic route for the cytotoxic API amenable to continuous processing was envisioned that would minimize potential worker exposure by reducing the number of unit operations and would allow commercial-scale API production in laboratory fume hoods with inexpensive glassware. The developed Schotten–Baumann conditions contained fewer unit operations than the existing batch process by utilizing the direct formation of the final sodium salt from a sulfonamide and acid chloride without isolation of the free acyl sulfonamide. Batch development, continuous proof of concept studies, 5.2 g/h lab-scale demonstration and 5 kg/day commercial-scale runs will be discussed. Very stringent release specifications were in place for the tasisulam API batch process, and the challenges of meeting these requirements for the continuous process are detailed. Finally, the quality of material generated during startup and shutdown transitions will be addressed

    How to Convert a Walk-in Hood into a Manufacturing Facility: Demonstration of a Continuous, High-Temperature Cyclization to Process Solids in Flow

    No full text
    An intramolecular thermal cyclization protocol was developed in a flow reactor to take advantage of the high pressures and temperatures that are easily obtained in small scale autoclave reactors that have been modified to handle slurries. This reactor was equipped with a fill/empty pumping system to enable easy and nearly complete transfer of slurries. The reaction conditions were designed to take advantage of the insolubility of the product in order to separate it from residual starting material by filtration after short reaction times. Recycling of the filtrate maximized the yield and throughput while minimizing decomposition. Recycles were accomplished using a strip to dryness protocol that was easily performed in a rotary evaporator. This new equipment set was designed with lab-hood manufacturing in mind, a minimized footprint, and the system was completely automated for charging, emptying, rinsing, and reacting. Additional efforts for quick screening and alternate modes of addition were also investigated

    Mechanistic Study of Diketopiperazine Formation during Solid-Phase Peptide Synthesis of Tirzepatide

    No full text
    This study focused on investigating diketopiperazine (DKP) and the formation of associated double-amino-acid deletion impurities during linear solid-phase peptide synthesis (SPPS) of tirzepatide (TZP). We identified that the DKP formation primarily occurred during the Fmoc-deprotection reaction and post-coupling aging of the unstable Fmoc-Pro-Pro-Ser-resin active pharmaceutical ingredient (API) intermediate. Similar phenomena have also been observed for other TZP active pharmaceutical ingredient (API) intermediates that contain a penultimate proline amino acid, such as Fmoc-Ala-Pro-Pro-Pro-Ser-resin, Fmoc-Pro-Pro-Pro-Ser-resin, and Fmoc-Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser-resin, which are intermediates for both hybrid and linear synthesis approaches. During post-coupling aging, it is found that Fmoc deprotection can proceed in dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), and acetonitrile (ACN) solvents without any piperidine addition. Density functional theory (DFT) calculations showed that a peptide that has a penultimate proline stabilizes the transition state through the C–H···π interaction during Fmoc decomposition, which causes those peptides to be more prone to cascade-deprotection reactions. Pseudo-reaction pathways are then proposed, and a corresponding macrokinetics model is developed to allow accurate prediction of the TZP peptide intermediate self-deprotection and DKP formation rate. Based on those studies, control strategies for minimizing DKP formation were further investigated and an alternative to Fmoc protection was identified (Bsmoc-protected amino acids), which eliminated the formation of the DKP byproducts. In addition, the use of oxyma additives and lower storage temperature was demonstrated to markedly improve the peptide intermediate stability to DKP degradation pathways

    Development and Manufacturing GMP Scale-Up of a Continuous Ir-Catalyzed Homogeneous Reductive Amination Reaction

    Get PDF
    The design, development, and scale up of a continuous iridium-catalyzed homogeneous high pressure reductive amination reaction to produce <b>6</b>, the penultimate intermediate in Lilly’s CETP inhibitor evacetrapib, is described. The scope of this report involves initial batch chemistry screening at milligram scale through the development process leading to full-scale production in manufacturing under GMP conditions. Key aspects in this process include a description of drivers for developing a continuous process over existing well-defined batch approaches, manufacturing setup, and approaches toward key quality and regulatory questions such as batch definition, the use of process analytics, start up and shutdown waste, “in control” versus “at steady state”, lot genealogy and deviation boundaries, fluctuations, and diverting. The fully developed continuous reaction operated for 24 days during a primary stability campaign and produced over 2 MT of the penultimate intermediate in 95% yield after batch workup, crystallization, and isolation
    corecore