94 research outputs found

    A seed specific dose kernel method for low-energy brachytherapy dosimetry.

    Get PDF
    We describe a method for independently verifying the dose distributions from pre- and post-implant brachytherapy source distributions. Monte Carlo calculations have been performed to characterize the three-dimensional dose distribution in water phantom from a low-energy brachytherapy source. The calculations are performed in a voxelized, Cartesian coordinate geometry and normalized based upon a separate Monte Carlo calculation for the seed specific air-kerma strength to produce an absolute dose grid with units of cGy hr(-1) x U(-1). The seed-specific, three-dimensional dose grid is stored as a text file for processing using a separate visual basic program. This program requires the coordinate positions of each seed in the pre- or post-plan and sums the kernel file for a three-dimensional composite dose distribution. A kernel matrix size of 81x81x81 with a voxel size of 1.0x1.0x1.0 mm3 was chosen as a compromise between calculation time, kernel size, and truncation of the stored dose distribution as a function of radial distance from the midpoint of the seed. Good agreement is achieved for a representative pre- and post-plan comparison versus a commercial implementation of the TG-43 brachytherapy dosimetry protocol

    Dosimetric characteristics of a new linear accelerator under gated operation.

    Get PDF
    Respiratory gated radiotherapy may allow reduction of the treatment margins, thus sparing healthy tissue and/or allowing dose escalation to the tumor. However, current commissioning and quality assurance of linear accelerators do not include evaluation of gated delivery. The purpose of this study is to test gated photon delivery of a Siemens ONCOR Avant-Garde linear accelerator. Dosimetric characteristics for gated and nongated delivery of 6-MV and 15-MV photons were compared for the range of doses, dose rates, and for several gating regimes. Dose profiles were also compared using Kodak EDR2 and X-Omat V films for 6-MV and 15-MV photons for several dose rates and gating regimes. Results showed that deviation is less than or equal to 0.6% for all dose levels evaluated with the exception of the lowest dose delivered at 25 MU at an unrealistically high gating frequency of 0.5 Hz. At 400 MU, dose profile deviations along the central axes in in-plane and cross-plane directions within 80% of the field size are below 0.7%. No unequivocally detectable dose profile deviation was observed for 50 MU. Based on the comparison with widely accepted standards for conventional delivery, our results indicate that this LINAC is well suited for gated delivery of nondynamic fields
    corecore