15 research outputs found

    Dynamic glucose disposal is driven by reduced endogenous glucose production in response to voluntary wheel running: A stable isotope approach

    Get PDF
    © 2020 the American Physiological Society. Dynamic glucose disposal is driven by reduced endogenous glucose production in response to voluntary wheel running: A stable isotope approach. Am J Physiol Endocrinol Metab 319: E2-E10, 2020. First published April 28, 2020; doi:10.1152/ajpendo.00450.2019.-To resolve both the systems level and molecular mechanisms responsible for exerciseinduced improvements in glucose tolerance, we sought to test the effect of voluntary wheel running exercise on postprandial glucose dynamics. We utilized a stable isotope-labeled oral glucose tolerance test (SI-OGTT) incorporating complementary deuterium glucose tracers at a 1:1 ratio (2-2H-glucose and 6-6 2H-glucose; 2g/kg lean body mass) to distinguish between endogenous glucose production (EGP) and whole-body glucose disposal. SI-OGTT was performed in C57BL/6J mice after 8 wk on a high-fat diet (HFD; 45% fat). Mice were then randomized to either a wheel-running cage (n = 13, HFD Ex) or a normal cage (n = 13, HFD Sed) while maintaining the HFD for 4 wk before performing a SI-OGTT. HFD Ex mice demonstrated improvements in whole blood glucose total area under the curve (AUC) that was attributed primarily to a reduction in EGP AUC. Serum insulin levels measured at 0 and 15 min post-glucose gavage were significantly elevated in the HFD Sed mice, whereas HFD Ex mice demonstrated the expected reduction in insulin at both time points. Overall, exercise improved hepatic insulin sensitivity by reducing postprandial EGP, but also increased whole-body glucose disposal. Finally, these results demonstrate the benefits of exercise on hepatic insulin sensitivity by combining a more physiological route of glucose administration (oral glucose) with the resolution of stable isotope tracers. These novel observations clearly demonstrate that SI-OGTT is a sensitive and cost-effective method to measure exercise adaptations in obese mice with as little as 2 μl of tail blood

    Adaptive Fat Oxidation Is Coupled with Increased Lipid Storage in Adipose Tissue of Female Mice Fed High Dietary Fat and Sucrose

    No full text
    Western diets high in fat and sucrose are associated with metabolic syndrome (MetS). Although the prevalence of MetS in women is comparable to that in men, metabolic adaptations in females to Western diet have not been reported in preclinical studies. This study investigates the effects of Western diet on risk factors for MetS in female mice. Based on our earlier studies in male mice, we hypothesized that dietary supplementation with extracts of Artemisia dracunculus L. (PMI5011) and Momordica charantia (bitter melon) could affect MetS risk factors in females. Eight-week-old female mice were fed a 10% kcal fat, 17% kcal sucrose diet (LFD); high-fat, high-sucrose diet (HFS; 45% kcal fat, 30% kcal sucrose); or HFS diet with PMI5011 or bitter melon for three months. Body weight and adiposity in all HFS groups were greater than the LFD. Total cholesterol level was elevated with the HFS diets along with LDL cholesterol, but triglycerides and free fatty acids were unchanged from the LFD. Over the three month period, female mice responded to the HFS diet by adaptive increases in fat oxidation energy in muscle and liver. This was coupled with increased fat storage in white and brown adipose tissue depots. These responses were enhanced with botanical supplementation and confer protection from ectopic lipid accumulation associated with MetS in female mice fed an HFS diet

    Exercise reduced the formation of new adipocytes in the adipose tissue of mice in vivo.

    No full text
    Exercise has beneficial effects on metabolism and health. Although the skeletal muscle has been a primary focus, exercise also mediates robust adaptations in white adipose tissue. To determine if exercise affects in vivo adipocyte formation, fifty-two, sixteen-week-old C57BL/6J mice were allowed access to unlocked running wheels [Exercise (EX) group; n = 13 males, n = 13 females] or to locked wheels [Sedentary (SED) group; n = 13 males, n = 13 females] for 4-weeks. In vivo adipocyte formation was assessed by the incorporation of deuterium (2H) into the DNA of newly formed adipocytes in the inguinal and gonadal adipose depots. A two-way ANOVA revealed that exercise significantly decreased new adipocyte formation in the adipose tissue of mice in the EX group relative to the SED group (activity effect; P = 0.02). This reduction was observed in male and female mice (activity effect; P = 0.03). Independent analysis of the depots showed a significant reduction in adipocyte formation in the inguinal (P = 0.05) but not in the gonadal (P = 0.18) of the EX group. We report for the first time that exercise significantly reduced in vivo adipocyte formation in the adipose tissue of EX mice using a physiologic metabolic 2H2O-labeling protocol

    l-Citrulline Supplementation: Impact on Cardiometabolic Health

    Get PDF
    Diminished bioavailability of nitric oxide (NO), the gaseous signaling molecule involved in the regulation of numerous vital biological functions, contributes to the development and progression of multiple age- and lifestyle-related diseases. While l-arginine is the precursor for the synthesis of NO by endothelial-nitric oxide synthase (eNOS), oral l-arginine supplementation is largely ineffective at increasing NO synthesis and/or bioavailability for a variety of reasons. l-citrulline, found in high concentrations in watermelon, is a neutral alpha-amino acid formed by enzymes in the mitochondria that also serves as a substrate for recycling l-arginine. Unlike l-arginine, l-citrulline is not quantitatively extracted from the gastrointestinal tract (i.e., enterocytes) or liver and its supplementation is therefore more effective at increasing l-arginine levels and NO synthesis. Supplementation with l-citrulline has shown promise as a blood pressure lowering intervention (both resting and stress-induced) in adults with pre-/hypertension, with pre-clinical (animal) evidence for atherogenic-endothelial protection. Preliminary evidence is also available for l-citrulline-induced benefits to muscle and metabolic health (via vascular and non-vascular pathways) in susceptible/older populations. In this review, we examine the impact of supplementing this important urea cycle intermediate on cardiovascular and metabolic health outcomes and identify future directions for investigating its therapeutic impact on cardiometabolic health

    The Effect of Watermelon Juice Supplementation on Heart Rate Variability and Metabolic Response during an Oral Glucose Challenge: A Randomized, Double-Blind, Placebo-Controlled Crossover Trial

    No full text
    Heart rate variability (HRV) provides a simple method to evaluate autonomic function in health and disease. A reduction in HRV may indicate autonomic dysfunction and is strongly associated with aspects of cardiometabolic disease, including hyperglycemia. Reduced nitric oxide (NO) bioavailability is also implicated in the development of cardiometabolic disease and autonomic dysfunction. Watermelons are natural sources of L-arginine and L-citrulline, substrates used for NO synthesis. Watermelon consumption can improve NO bioavailability. We conducted a randomized, double-blind, placebo-controlled crossover trial to test the effects of 2 weeks of daily watermelon juice (WMJ) supplementation on HRV in response to an oral glucose challenge (OGC) in healthy young adults. We also performed indirect calorimetry to assess if our intervention altered the metabolic response to the OGC. WMJ supplementation preserved high-frequency power (HF) (treatment effect, p = 0.03) and the percentage of successive differences that differ by more than 50 ms (pNN50) (treatment effect, p = 0.009) when compared to the placebo treatment. There was no difference in resting energy expenditure or substate oxidation according to treatment. We report that WMJ supplementation attenuates OGC-induced reductions in HRV. Future work should emphasize the importance of NO bioavailability in autonomic dysfunction in cardiometabolic disease

    Differences in short-term food preferences following vertical sleeve gastrectomy and Roux-en-Y gastric bypass surgery

    No full text
    Bariatric surgery is effective in reducing body weight and obesity-related comorbidities. This study examined differences in the short-term effect of Roux en Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) on the hedonic rating of food. Predominantly black women with complicated obesity and a BMI\u3e50 g/m(2) completed a validated food preference questionnaire before and 1-3 months following surgery. Analysis of preference scores indicated that the preference for fat decreased with both surgeries. VSG also decreased the preference for sugar. Further studies are needed to evaluate long term effects of surgery on food preferences and to elucidate physiological mechanisms

    Loss of Adipocyte STAT5 Confers Increased Depot-Specific Adiposity in Male and Female Mice That Is Not Associated With Altered Adipose Tissue Lipolysis

    No full text
    STATs (Signal Transducers and Activators of Transcription) 5A and 5B are induced during adipocyte differentiation and are primarily activated by growth hormone (GH) and prolactin in fat cells. Previous studies in mice lacking adipocyte GH receptor or STAT5 support their roles in lipolysis-mediated reduction of adipose tissue mass. Male and female mice harboring adipocyte-specific deletion of both STAT5 genes (STAT5) exhibit increased subcutaneous or inguinal adipose tissue mass, but no changes in visceral or gonadal fat mass. Both depots display substantial increases in adipocyte size with no changes in lipolysis in adipose tissue explants. RNA sequencing analysis of subcutaneous adipose tissue and indirect calorimetry experiments reveal sex-dependent differences in adipose gene expression and whole-body energy expenditure, respectively, resulting from the loss of adipocyte STAT5
    corecore