26 research outputs found

    Transcription, one allele at a time

    Get PDF
    A recent study presents a technique allowing one to image transcription from a single gene copy in live cells, and highlights the dynamic nature of transcriptional regulation

    Wringing out DNA

    Full text link
    The chiral nature of DNA plays a crucial role in cellular processes. Here we use magnetic tweezers to explore one of the signatures of this chirality, the coupling between stretch and twist deformations. We show that the extension of a stretched DNA molecule increases linearly by 0.42 nm per excess turn applied to the double helix. This result contradicts the intuition that DNA should lengthen as it is unwound and get shorter with overwinding. We then present numerical results of energy minimizations of torsionally restrained DNA that display a behaviour similar to the experimental data and shed light on the molecular details of this surprising effect.Comment: 4 pages revtex4, 4 figure

    DNA mechanics as a tool to probe helicase and translocase activity

    Get PDF
    Helicases and translocases are proteins that use the energy derived from ATP hydrolysis to move along or pump nucleic acid substrates. Single molecule manipulation has proved to be a powerful tool to investigate the mechanochemistry of these motors. Here we first describe the basic mechanical properties of DNA unraveled by single molecule manipulation techniques. Then we demonstrate how the knowledge of these properties has been used to design single molecule assays to address the enzymatic mechanisms of different translocases. We report on four single molecule manipulation systems addressing the mechanism of different helicases using specifically designed DNA substrates: UvrD enzyme activity detection on a stretched nicked DNA molecule, HCV NS3 helicase unwinding of a RNA hairpin under tension, the observation of RecBCD helicase/nuclease forward and backward motion, and T7 gp4 helicase mediated opening of a synthetic DNA replication fork. We then discuss experiments on two dsDNA translocases: the RuvAB motor studied on its natural substrate, the Holliday junction, and the chromosome-segregation motor FtsK, showing its unusual coupling to DNA supercoiling

    Imaging the transcriptome

    No full text

    Mécanique de l' ADN et étude des hélicases en molécule unique

    No full text
    PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Transcription goes digital

    No full text
    corecore