781 research outputs found

    Specially Coupled Dark Energy in the Oscillating FRW Cosmology

    Full text link
    We consider a four-dimensional flat-space Friedman universe, which is filled with two interacting ideal fluids (the coupling of dark energy with dark matter of special form). The gravitational equations of motion are solved. It is shown that in some cases there appears a periodic universe with finite-time cosmological singularities and also the universe becomes static in the remote future.Comment: 4 page

    Inhomogeneous Dark Fluid and Dark Matter, Leading to a Bounce Cosmology

    Full text link
    The purpose of this short review is to describe cosmological models with a linear inhomogeneous time-dependent equation of state (EoS) for the dark energy, when the dark fluid is coupled with dark matter. This may lead to a bounce cosmology. We consider equivalent descriptions in terms of the EoS parameters for an exponential, a power-law, or a double-exponential law for the scale factor aa. Stability issues are discussed by considering small perturbations around the critical points for the bounce, in the early as well as in the late, universe. The latter part of the paper is concerned with dark energy coupled with dark matter in viscous fluid cosmology. We allow the bulk viscosity ΞΆ=ΞΆ(H,t)\zeta=\zeta(H,t) to be a function of the Hubble parameter and the time, and consider the Little Rip, the Pseudo Rip, and the bounce universe. Analytic expressions for characteristic properties of these cosmological models are obtained.Comment: 13 pages, no figures. Mini-review, to appear in the MDPI journal Univers

    Little Rip and Pseudo Rip Phenomena from Coupled Dark Energy

    Full text link
    We consider Little Rip (LR) and Pseudo Rip (PR) cosmological models with two interacting ideal fluids, corresponding to dark energy and dark matter. The interaction between the dark energy and the dark matter fluid components is described in terms of the parameters in the equations of state for the LR and PR universes. In contrast to a model containing only a pure dark energy, the presence of the interaction term between the fluid components in the gravitational equations leads to a modification of the equation of state parameters. The properties of the early universe in this formalism are pointed out.Comment: 11 pages, Latex2e, no figures. To appear in Modern Physics Letters

    Inhomogeneous viscous dark fluid coupled with dark matter in the FRW universe

    Full text link
    A cosmological model with an inhomogeneous viscous dark fluid coupled with dark matter in a flat Friedman-Robertson-Walker universe is investigated. The influence of dark matter on the behavior of an inhomogeneous viscous fluid of this kind, responsible for cosmic acceleration and for the appearance of different types of singularities, is analyzed in detail. In particular, the critical points corresponding to the solutions of the background equations in a useful approximation are obtained explicitly.Comment: 11 pages, 2 figures, to appear in MPL

    Analysis of the transient process in underwater spark discharges

    Get PDF
    lf water is stressed with a voltage pulse having a rise time of tens of nanoseconds which creates a sufficiently high electric field, streamers develop and a highly conductive channel forms between the electrodes. The intense Joule heating of the plasma in the channel results in the collapse of its electrical resistance from a few Ohms to a few tens of milliOhms with the behavior of the collapse depending on the parameters of the discharge circuit. The rapid decrease of the resistance occurs during the first quarter of the current oscillation in the circuit. During this time, the pressure inside the channel rises to several GPa, causing the channel to expand in water with a velocity of 100 to 1000 m/s driving a high power ultrasound pulse. In the present paper, a phenomenological model is discussed which describes the dynamics of the resistance of underwater spark discharges during its initial stage and allows the pressure in the acoustic pulse to be obtained. The model is based on the plasma channel energy balance equation used by Braginskii and links the hydrodynamic characteristics of the channel and the parameters of the electric driving circuit. The dynamics of the transient cavity during the dissipation of the electrical energy in the plasma channel is described and the analytical results are compared with experimental measurements of the current in the electrical circuit and the acoustic pulse profiles radiated by the transient cavities

    Inflation in Terms of a Viscous van der Waals Coupled Fluid

    Full text link
    We propose to describe the acceleration of the universe by introducing a model of two coupled fluids. We focus on the accelerated expansion at the early stages. The inflationary expansion is described in terms of a van der Waals equation of state for the cosmic fluid, when account is taken of bulk viscosity. We assume that there is a weak interaction between the van der Waals fluid and the second component (matter). The gravitational equations for the energy densities of the two components are solved for a homogeneous and isotropic Friedmann-Robertson-Walker universe, and analytic expressions for the Hubble parameter are obtained. The slow-roll parameters, the spectral index, and the tensor-to-scalar ratio are calculated and compared with the most recent astronomical data from the Planck satellite. Given reasonable restriction on the parameters, the agreement with observations is favorable.Comment: 7 pages, no figures. To appear in Int. J. Geom. Meth. Mod. Phy
    • …
    corecore