21 research outputs found

    A convergent algorithm for the hybrid problem of reconstructing conductivity from minimal interior data

    Full text link
    We consider the hybrid problem of reconstructing the isotropic electric conductivity of a body Ω\Omega from interior Current Density Imaging data obtainable using MRI measurements. We only require knowledge of the magnitude ∣J∣|J| of one current generated by a given voltage ff on the boundary ∂Ω\partial\Omega. As previously shown, the corresponding voltage potential u in Ω\Omega is a minimizer of the weighted least gradient problem u=argmin{∫Ωa(x)∣∇u∣:u∈H1(Ω),  u∣∂Ω=f},u=\hbox{argmin} \{\int_{\Omega}a(x)|\nabla u|: u \in H^{1}(\Omega), \ \ u|_{\partial \Omega}=f\}, with a(x)=∣J(x)∣a(x)= |J(x)|. In this paper we present an alternating split Bregman algorithm for treating such least gradient problems, for a∈L2(Ω)a\in L^2(\Omega) non-negative and f∈H1/2(∂Ω)f\in H^{1/2}(\partial \Omega). We give a detailed convergence proof by focusing to a large extent on the dual problem. This leads naturally to the alternating split Bregman algorithm. The dual problem also turns out to yield a novel method to recover the full vector field JJ from knowledge of its magnitude, and of the voltage ff on the boundary. We then present several numerical experiments that illustrate the convergence behavior of the proposed algorithm

    Coupled Physics Electrical Conductivity Imaging

    No full text
    Coupled physics electrical conductivity imaging utilizes interactions between the electric and some other fields, thereby providing useful interior functionals. Combining the interior and boundary data, such couplings are aimed to overcome low resolution inherent to the traditional electrical impedance tomography. In this paper we present a brief overview of some physical and mathematical aspects of coupled physics electrical conductivity imaging
    corecore