123 research outputs found

    Resonances and final state interactions in the reaction pp->pK^+Lambda

    Get PDF
    A study of the strangeness production reaction pp->pK^+Lambda for excess energies of epsilon \le 150 MeV, accessible at high-luminosity accelerator facilities like COSY, is presented. Methods to analyze the Dalitz plot distribution and angular spectra in the Jackson and helicity frames are worked out and suitable observables for extracting information on low lying resonances that couple to the K-Lambda system and for determining the Lambda-p effective-range parameters from the final state interaction are identified and discussed. Furthermore, the chances for identifying the reaction mechanism of strangeness production are investigated.Comment: 16 pages, 16 figure

    Implications for (d,p) reaction theory from nonlocal dispersive optical model analysis of 40^{40}Ca(d,p)41^{41}Ca

    Get PDF
    The nonlocal dispersive optical model (NLDOM) nucleon potentials are used for the first time in the adiabatic analysis of a (d,p) reaction to generate distorted waves both in the entrance and exit channels. These potentials were designed and fitted by Mahzoon et al.et \text{ } al. [Phys. Rev. Lett. 112, 162502 (2014)] to constrain relevant single-particle physics in a consistent way by imposing the fundamental properties, such as nonlocality, energy-dependence and dispersive relations, that follow from the complex nature of nuclei. However, the NLDOM prediction for the 40^{40}Ca(d,p)41^{41}Ca cross sections at low energy, typical for some modern radioactive beam ISOL facilities, is about 70%\% higher than the experimental data despite being reduced by the NLDOM spectroscopic factor of 0.73. This overestimation comes most likely either from insufficient absorption or due to constructive interference between ingoing and outgoing waves. This indicates strongly that additional physics arising from many-body effects is missing in the widely used current versions of (d,p) reaction theories.Comment: 14 pages, 15 figure

    Hyperspherical cluster model for bosons: application to sub-threshold halo states in helium drops

    Full text link
    To describe long-range behaviour of one particle removed from a few- or a many-body system, a hyperspherical cluster model has been developed. It has been applied to the ground and first excited states of helium drops with five, six, eight and ten atoms interacting via a two-body soft gaussian potential. Convergence of the hyperspherical cluster harmonics expansion is studied for binding energies, root-mean-squared radii and overlaps of the wave functions of two helium drops differing by one atom. It was shown that with increasing model space the functional form of such overlaps at large distances converges to the correct asymptotic behaviour. The asymptotic normalization coefficients that quantify the overlaps' amplitudes in this region are calculated. It was also shown that in the first excited state one helium atom stays far apart from the rest forming a two-body molecule, or a halo. The probability of finding the halo atom in the classically-forbidden region of space depends on the definition of the latter and on the number of atoms in the drop. The total norm of the overlap integrals, the spectroscopic factor, represents the number of partitions of a many-body state into a chosen state of the system with one particle removed. The spectroscopic factors have been calculated and their sum rules are discussed giving a further insight into the structure of helium drops.Comment: Accepted for publication in Few-Body System

    Modelling overlap functions for one-nucleon removal: role of the effective three-nucleon force

    Full text link
    One-nucleon overlap functions, needed for nucleon-removal reaction calculations, are solutions of an inhomogeneous equation with the source term defined by the wave functions of the initial and final nuclear states and interaction between the removed nucleon with the rest. The source term approach (STA) allows the overlaps with correct asymptotic decrease to be modelled while using nuclear many-body functions calculated in minimal model spaces. By properly choosing the removed nucleon interaction the minimum-model-space STA can reproduce reduced values of spectroscopic factors extracted from nucleon-removal reactions and predicts isospin asymmetry in the spectroscopic factor reduction. It is well-known that model space truncation leads to the appearance of higher-order induced forces, with three-nucleon force being the most important. In this paper the role of such a force on the source term calculation is studied. Applications to one-nucleon removal from double-magic nuclei show that three-nucleon force improves the description of available phenomenological overlap functions and reduces isospin asymmetry in spectroscopic factors.Comment: Accepted for publication in Journal of Physics
    corecore