1,130 research outputs found

    Electron cyclotron resonance near the axis of the gas-dynamic trap

    Full text link
    Propagation of an extraordinary electromagnetic wave in the vicinity of electron cyclotron resonance surface in an open linear trap is studied analytically, taking into account inhomogeneity of the magnetic field in paraxial approximation. Ray trajectories are derived from a reduced dispersion equation that makes it possible to avoid the difficulty associated with a transition from large propagation angles to the case of strictly longitudinal propagation. Our approach is based on the theory, originally developed by the Zvonkov and Timofeev [1], who used the paraxial approximation for the magnetic field strength, but did not consider the slope of the magnetic field lines, which led to considerable error, as has been recently noted by Gospodchikov and Smolyakova [2]. We have found ray trajectories in analytic form and demonstrated that the inhomogeneity of both the magnetic field strength and the field direction can qualitatively change the picture of wave propagation and significantly affect the efficiency of electron cyclotron heating of a plasma in a linear magnetic trap. Analysis of the ray trajectories has revealed a criterion for the resonance point on the axis of the trap to be an attractor for the ray trajectories. It is also shown that a family of ray trajectories can still reach the resonance point on the axis if the latter generally repels the ray trajectories. As an example, results of general theory are applied to the electron cyclotron resonance heating experiment which is under preparation on the Gas Dynamic Trap in the Budker Institute of Nuclear Physics [3]

    Generation of powerful terahertz emission in a beam-driven strong plasma turbulence

    Full text link
    Generation of terahertz electromagnetic radiation due to coalescence of upper-hybrid waves in the long-wavelength region of strong plasma turbulence driven by a high-current relativistic electron beam in a magnetized plasma is investigated. The width of frequency spectrum as well as angular characteristics of this radiation for various values of plasma density and turbulence energy are calculated using the simple theoretical model adequately describing beam-plasma experiments at mirror traps. It is shown that the power density of electromagnetic emission at the second harmonic of plasma frequency in the terahertz range for these laboratory experiments can reach the level of 1 MW/cm3{MW/cm}^3 with 1% conversion efficiency of beam energy losses to electromagnetic emission

    Nonlinear dispersion of stationary waves in collisionless plasmas

    Full text link
    A nonlinear dispersion of a general stationary wave in collisionless plasma is obtained in a non-differential form from a single-particle oscillation-center Hamiltonian. For electrostatic oscillations in nonmagnetized plasma, considered as a paradigmatic example, the linear dielectric function is generalized, and the trapped particle contribution to the wave frequency shift Δω\Delta\omega is found analytically as a function of the wave amplitude aa. Smooth distributions yield Δωa1/2\Delta\omega\sim a^{1/2}, as usual. However, beam-like distributions of trapped electrons result in different power laws, or even a logarithmic nonlinearity, which are derived as asymptotic limits of the same dispersion relation

    Second harmonic electromagnetic emission of a turbulent magnetized plasma driven by a powerful electron beam

    Full text link
    The power of second harmonic electromagnetic emission is calculated for the case when strong plasma turbulence is excited by a powerful electron beam in a magnetized plasma. It is shown that the simple analytical model of strong plasma turbulence with the assumption of a constant pump power is able to explain experimentally observed bursts of electromagnetic radiation as a consequence of separate collapse events. It is also found that the electromagnetic emission power calculated for three-wave interaction processes occurring in the long-wavelength part of turbulent spectrum is in order-of-magnitude agreement with experimental results

    Adiabatic nonlinear waves with trapped particles: II. Wave dispersion

    Full text link
    A general nonlinear dispersion relation is derived in a nondifferential form for an adiabatic sinusoidal Langmuir wave in collisionless plasma, allowing for an arbitrary distribution of trapped electrons. The linear dielectric function is generalized, and the nonlinear kinetic frequency shift ωNL\omega_{\rm NL} is found analytically as a function of the wave amplitude aa. Smooth distributions yield ωNLa\omega_{\rm NL} \propto \sqrt{a}, as usual. However, beam-like distributions of trapped electrons result in different power laws, or even a logarithmic nonlinearity, which are derived as asymptotic limits of the same dispersion relation. Such beams are formed whenever the phase velocity changes, because the trapped distribution is in autoresonance and thus evolves differently from the passing distribution. Hence, even adiabatic ωNL(a)\omega_{\rm NL}(a) is generally nonlocal.Comment: submitted together with Papers I and II
    corecore