5 research outputs found

    Coupled Human-machine Tele-manipulation

    Get PDF
    AbstractRobots are primarily deployed for tasks which are dirty, dull, or dangerous. While the former two are already highly automated, many dangerous tasks such as explosive ordnance disposal or inspection in hazardous environments are predominantly done via tele-operation. Usually, such tasks require the manipulation of objects in a way that cannot be done reliably with automated systems. In this paper, we present a method to tele-operate the manipulator of a robot by transferring the operator's arm movement. The movement is recorded with inertial measurement units which can be sewn into clothing and need no external infrastructure like cameras or motion capture systems. The lack of intermediate user interfaces (e.g. joysticks) makes this control method very intuitive and easy to learn. We demonstrate this with two different NIST manipulation tests and as part of an integrated system for the ELROB robot competition

    Benchmark of 6D SLAM (6D Simultaneous Localisation and Mapping) Algorithms with Robotic Mobile Mapping Systems

    No full text
    This work concerns the study of 6DSLAM algorithms with an application of robotic mobile mapping systems. The architecture of the 6DSLAM algorithm is designed for evaluation of different data registration strategies. The algorithm is composed of the iterative registration component, thus ICP (Iterative Closest Point), ICP (point to projection), ICP with semantic discrimination of points, LS3D (Least Square Surface Matching), NDT (Normal Distribution Transform) can be chosen. Loop closing is based on LUM and LS3D. The main research goal was to investigate the semantic discrimination of measured points that improve the accuracy of final map especially in demanding scenarios such as multi-level maps (e.g., climbing stairs). The parallel programming based nearest neighborhood search implementation such as point to point, point to projection, semantic discrimination of points is used. The 6DSLAM framework is based on modified 3DTK and PCL open source libraries and parallel programming techniques using NVIDIA CUDA. The paper shows experiments that are demonstrating advantages of proposed approach in relation to practical applications. The major added value of presented research is the qualitative and quantitative evaluation based on realistic scenarios including ground truth data obtained by geodetic survey. The research novelty looking from mobile robotics is the evaluation of LS3D algorithm well known in geodesy

    Benchmark of 6D SLAM (6D simultaneous localisation and mapping) algorithms with robotic mobile mapping systems

    No full text
    This work concerns the study of 6DSLAM algorithms with an application of robotic mobile mapping systems. The architecture of the 6DSLAM algorithm is designed for evaluation of different data registration strategies. The algorithm is composed of the iterative registration component, thus ICP (Iterative Closest Point), ICP (point to projection), ICP with semantic discrimination of points, LS3D (Least Square Surface Matching), NDT (Normal Distribution Transform) can be chosen. Loop closing is based on LUM and LS3D. The main research goal was to investigate the semantic discrimination of measured points that improve the accuracy of final map especially in demanding scenarios such as multi-level maps (e.g., climbing stairs). The parallel programming based nearest neighborhood search implementation such as point to point, point to projection, semantic discrimination of points is used. The 6DSLAM framework is based on modified 3DTK and PCL open source libraries and parallel programming techniques using NVIDiA CUDA. The paper shows experiments that are demonstrating advantages of proposed approach in relation to practical applications. The major added value of presented research is the qualitative and quantitative evaluation based on realistic scenarios including ground truth data obtained by geodetic survey. The research novelty looking from mobile robotics is the evaluation of LS3D algorithm well known in geodesy
    corecore