620 research outputs found

    Perforated Plates as Passive Mitigation Systems

    Get PDF
    This paper presents the results of tests on fully-clamped circular plates subjected to blastloading directed down a tube. Four series of tests were performed. In one set of experiments,the blast wave was allowed to progress unhindered down the tube to impinge upon the plate,and in the other tests, perforated plates were placed in the path of the blast wave to hinderprogression down the tube, disrupting the blast and absorbing some of the kinetic energy.Results of the tests indicate that the perforated plates can be used as a form of passive mitigation

    The need for combining implicit and explicit communication in cooperative robotic systems

    Get PDF
    As the number of robots used in warehouses and manufacturing increases, so too does the need for robots to be able to manipulate objects, not only independently, but also in collaboration with humans and other robots. Our ability to effectively coordinate our actions with fellow humans encompasses several behaviours that are collectively referred to as joint action, and has inspired advances in human-robot interaction by leveraging our natural ability to interpret implicit cues. However, our capacity to efficiently coordinate on object manipulation tasks remains an advantageous process that is yet to be fully exploited in robotic applications. Humans achieve this form of coordination by combining implicit communication (where information is inferred) and explicit communication (direct communication through an established channel) in varying degrees according to the task at hand. Although these two forms of communication have previously been implemented in robotic systems, no system exists that integrates the two in a task-dependent adaptive manner. In this paper, we review existing work on joint action in human-robot interaction, and analyse the state-of-the-art in robot-robot interaction that could act as a foundation for future cooperative object manipulation approaches. We identify key mechanisms that must be developed in order for robots to collaborate more effectively, with other robots and humans, on object manipulation tasks in shared autonomy spaces

    Towards fault diagnosis in robot swarms : An online behaviour characterisation approach

    Get PDF
    Although robustness has been cited as an inherent advantage of swarm robotics systems, it has been shown that this is not always the case. Fault diagnosis will be critical for future swarm robotics systems if they are to retain their advantages (robustness, flexibility and scalability). In this paper, existing work on fault detection is used as a foundation to propose a novel approach for fault diagnosis in swarms based on a behavioural feature vector approach. Initial results show that behavioural feature vectors can be used to reliably diagnose common electro-mechanical fault types in most cases tested

    A Time-Domain Analysis of Intracardiac Electrograms for Arrhythmia Detection

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73045/1/j.1540-8159.1991.tb05116.x.pd
    corecore