4 research outputs found
Twenty years of menin: emerging opportunities for restoration of transcriptional regulation in MEN1
Since the discovery of the multiple endocrine neoplasia type 1 (MEN1) gene in 1997, elucidation of the molecular function of its protein product, menin, has been a challenge. Biochemical, proteomics, genetics and genomics approaches have identified various potential roles, which converge on gene expression regulation. The most consistent findings show that menin connects transcription factors and chromatin-modifying enzymes, in particular, the histone H3K4 methyltransferase complexes MLL1 and MLL2. Chromatin immunoprecipitation combined with next-generation sequencing has enabled studying genome-wide dynamics of chromatin binding by menin. We propose that menin regulates cell type-specific transcriptional programs by linking chromatin regulatory complexes to specific transcription factors. In this fashion, the MEN1 gene is a tumor suppressor gene in the endocrine tissues that are affected in MEN1. Recent studies have hinted at possibilities to pharmacologically restore the epigenetic changes caused by loss of menin function as therapeutic strategies for MEN1, for example, by inhibition of histone demethylases. The current lack of appropriate cellular model systems for MEN1-associated tumors is a limitation for compound testing, which needs to be addressed in the near future. In this review, we look back at the past twenty years of research on menin and the mechanism of disease of MEN1. In addition, we discuss how the current understanding of the molecular function of menin offers future directions to develop novel treatments for MEN1-associated endocrine tumors
SAGA Is a General Cofactor for RNA Polymerase II Transcription
Prior studies suggested that SAGA and TFIID are alternative factors that promote RNA polymerase II transcription, with about 10% of genes in S. cerevisiae dependent on SAGA. We reassessed the role of SAGA by mapping its genome-wide location and role in global transcription in budding yeast. We find that SAGA maps to the UAS elements of most genes, overlapping with Mediator binding and irrespective of previous designations of SAGA- or TFIID-dominated genes. Disruption of SAGA through mutation or rapid subunit depletion reduces transcription from nearly all genes, measured by newly synthesized RNA. We also find that the acetyltransferase Gcn5 synergizes with Spt3 to promote global transcription and that Spt3 functions to stimulate TBP recruitment at all tested genes. Our data demonstrate that SAGA acts as a general cofactor required for essentially all RNA polymerase II transcription and is not consistent with the previous classification of SAGA- and TFIID-dominated genes. Baptista et al. show that SAGA, a transcriptional coactivator conserved in all eukaryotes, is involved in overall RNA polymerase II transcription in budding yeast. Using ChEC-seq, SAGA was shown to be recruited to both TATA-containing and TATA-less genes. In agreement, inactivation of SAGA leads to dramatic effects on nascent transcription
Genomic integrity of ground-state pluripotency
Pluripotent cells appear to be in a transient state during early development. These cells have the capability to transition into embryonic stem cells (ESCs). It has been reported that mouse pluripotent cells cultivated in chemically defined media sustain the ground state of pluripotency. Because the epigenetic pattern of pluripotent cells reflects their environment, culture under different conditions causes epigenetic changes, which could lead to genomic instability. This study focused on the DNA methylation pattern of repetitive elements (REs) and their activation levels under two ground-state conditions and assessed the genomic integrity of ESCs. We measured the methylation and expression level of REs in different media. The results indicated that although the ground-state conditions show higher REs activity, they did not lead to DNA damage; therefore, the level of genomic instability is lower under the ground-state compared with the conventional condition. Our results indicated that when choosing an optimum condition, different features of the condition must be considered to have epigenetically and genomically stable stem cells
De Novo Heterozygous POLR2A Variants Cause a Neurodevelopmental Syndrome with Profound Infantile-Onset Hypotonia
The RNA polymerase II complex (pol II) is responsible for transcription of all ∼21,000 human protein-encoding genes. Here, we describe sixteen individuals harboring de novo heterozygous variants in POLR2A, encoding RPB1, the largest subunit of pol II. An iterative approach combining structural evaluation and mass spectrometry analyses, the use of S. cerevisiae as a model system, and the assessment of cell viability in HeLa cells allowed us to classify eleven variants as probably disease-causing and four variants as possibly disease-causing. The significance of one variant remains unresolved. By quantification of phenotypic severity, we could distinguish mild and severe phenotypic consequences of the disease-causing variants. Missense variants expected to exert only mild structural effects led to a malfunctioning pol II enzyme, thereby inducing a dominant-negative effect on gene transcription. Intriguingly, individuals carrying these variants presented with a severe phenotype dominated by profound infantile-onset hypotonia and developmental delay. Conversely, individuals carrying variants expected to result in complete loss of function, thus reduced levels of functional pol II from the normal allele, exhibited the mildest phenotypes. We conclude that subtle variants that are central in functionally important domains of POLR2A cause a neurodevelopmental syndrome characterized by profound infantile-onset hypotonia and developmental delay through a dominant-negative effect on pol-II-mediated transcription of DNA