14 research outputs found
Nationwide comprehensive gastro-intestinal cancer cohorts: the 3P initiative
Background: The increasing sub-classification of cancer patients due to more detailed molecular classification of tumors, and limitations of current trial designs, require innovative research designs. We present the design, governance and current standing of three comprehensive nationwide cohorts including pancreatic, esophageal/gastric, and colorectal cancer patients (NCT02070146). Multidisciplinary collection of clinical data, tumor tissue, blood samples, and patient-reported outcome (PRO) measures with a nationwide coverage, provides the infrastructure for future and novel trial designs and facilitates research to improve outcomes of gastrointestinal cancer patients. Material and methods: All patients aged ≥18 years with pancreatic, esophageal/gastric or colorectal cancer are eligible. Patients provide informed consent for: (1) reuse of clinical data; (2) biobanking of primary tumor tissue; (3) collection of blood samples; (4) to be informed about relevant newly identified genomic aberrations; (5) collection of longitudinal PROs; and (6) to receive information on new interventional studies and possible participation in cohort multiple randomized controlled trials (cmRCT) in the future. Results: In 2015, clinical data of 21,758 newly diagnosed patients were collected in the Netherlands Cancer Registry. Additional clinical data on the surgical procedures were registered in surgical audits for 13,845 patients. Within the first two years, tumor tissue and blood samples were obtained from 1507 patients; during this period, 1180 patients were included in the PRO registry. Response rate for PROs was 90%. The consent rate to receive information on new interventional studies and possible participation in cmRCTs in the future was >85%. The number of hospitals participating in the cohorts is steadily increasing. Conclusion: A comprehensive nationwide multidisciplinary gastrointestinal cancer cohort is feasible and surpasses the limitations of classical study designs. With this initiative, novel and innovative studies can be performed in an efficient, safe, and comprehensive setting
Nationwide comprehensive gastro-intestinal cancer cohorts: the 3P initiative
Background: The increasing sub-classification of cancer patients due to more detailed molecular classification of tumors, and limitations of current trial designs, require innovative research designs. We present the design, governance and current standing of three comprehensive nationwide cohorts including pancreatic, esophageal/gastric, and colorectal cancer patients (NCT02070146). Multidisciplinary collection of clinical data, tumor tissue, blood samples, and patient-reported outcome (PRO) measures with a nationwide coverage, provides the infrastructure for future and novel trial designs and facilitates research to improve outcomes of gastrointestinal cancer patients. Material and methods: All patients aged ≥18 years with pancreatic, esophageal/gastric or colorectal cancer are eligible. Patients provide informed consent for: (1) reuse of clinical data; (2) biobanking of primary tumor tissue; (3) collection of blood samples; (4) to be informed about relevant newly identified genomic aberrations; (5) collection of longitudinal PROs; and (6) to receive information on new interventional studies and possible participation in cohort multiple randomized controlled trials (cmRCT) in the future. Results: In 2015, clinical data of 21,758 newly diagnosed patients were collected in the Netherlands Cancer Registry. Additional clinical data on the surgical procedures were registered in surgical audits for 13,845 patients. Within the first two years, tumor tissue and blood samples were obtained from 1507 patients; during this period, 1180 patients were included in the PRO registry. Response rate for PROs was 90%. The consent rate to receive information on new interventional studies and possible participation in cmRCTs in the future was >85%. The number of hospitals participating in the cohorts is steadily increasing. Conclusion: A comprehensive nationwide multidisciplinary gastrointestinal cancer cohort is feasible and surpasses the limitations of classical study designs. With this initiative, novel and innovative studies can be performed in an efficient, safe, and comprehensive setting
Inland Waterway Efficiency Through Skipper Collaboration and Joint Speed Optimization
We address the problem of minimizing the aggregated fuel consumption by the vessels in an inland waterway (a river) with a single lock. The fuel consumption of a vessel depends on its velocity and the slower it moves, the less fuel it consumes. Given entry times of the vessels into the waterway and the deadlines before which they need to leave the waterway, we decide on optimal velocities of the vessels that minimize their private fuel consumption. Presence of the lock and possible congestions on the waterway make the problem computationally challenging. First, we prove that in general Nash equilibria might not exist, i.e., if there is no supervision on the vessels velocities, there might not exist a strategy profile from which no vessel can unilaterally deviate to decrease its private fuel consumption. Next, we introduce simple supervision methods to guarantee existence of Nash equilibria. Unfortunately, though a Nash equilibrium can be computed, the aggregated fuel consumption of such a stable solution is high compared to the consumption in a social optimum, where the total fuel consumption is minimized. Therefore, we propose a mechanism involving payments between vessels, guaranteeing Nash equilibria while minimizing the fuel consumption. This mechanism is studied for both the offline setting, where all information is known beforehand, and online setting, where we only know the entry time and deadline of a vessel when it enters the waterway
Selective identification of macrophages and cancer cells based on thermal transport through surface-imprinted polymer layers
In this article, we describe a novel straightforward method for the specific identification of viable cells (macrophages and cancer cell lines MCF-7 and Jurkat) in a buffer solution. The detection of the various cell types is based on changes of the heat transfer resistance at the solid-liquid interface of a thermal sensor device induced by binding of the cells to a surface-imprinted polymer layer covering an aluminum chip. We observed that the binding of cells to the polymer layer results in a measurable increase of heat transfer resistance, meaning that the cells act as a thermally insulating layer. The detection limit was found to be on the order of 10(4) cells/mL, and mutual cross-selectivity effects between the cells and different types of imprints were carefully characterized. Finally, a rinsing method was applied, allowing for the specific detection of cancer cells with their respective imprints while the cross-selectivity toward peripheral blood mononuclear cells was negligible. The concept of the sensor platform is fast and low-cost while allowing also for repetitive measurement