441 research outputs found
Three Stages of Lysozyme Thermal Stabilization by High and Medium Charge Density Anions
Addition of high and medium charge density anions (phosphate, sulfate, and chloride) to lysozyme in pure water demonstrates three stages for stabilization of the protein structure. The first two stages have a minor impact on lysozyme stability and are probably associated with direct interaction of the ions with charged and partial charges on the protein’s surface. There is a clear transition between the second and third stages; in the case of sodium chloride, disodium sulfate and disodium hydrogen phosphate this is at 550, 210, and 120 mM, respectively. Stabilization of lysozyme can be explained by the free energy required to hydrate the protein as it unfolds. At low ion concentrations, the protein’s hydration layer is at equilibrium with the bulk water. After the transition, bulk water is depleted and the protein is competing for water with the ions. With competition for water between the protein and the ions at higher salt concentrations, the free energy required to hydrate the interior of the protein rises and it is this that stabilizes the protein structure
Inhibition of Protein Aggregation: Supramolecular Assemblies of Arginine Hold the Key
BACKGROUND: Aggregation of unfolded proteins occurs mainly through the exposed hydrophobic surfaces. Any mechanism of inhibition of this aggregation should explain the prevention of these hydrophobic interactions. Though arginine is prevalently used as an aggregation suppressor, its mechanism of action is not clearly understood. We propose a mechanism based on the hydrophobic interactions of arginine. METHODOLOGY: We have analyzed arginine solution for its hydrotropic effect by pyrene solubility and the presence of hydrophobic environment by 1-anilino-8-naphthalene sulfonic acid fluorescence. Mass spectroscopic analyses show that arginine forms molecular clusters in the gas phase and the cluster composition is dependent on the solution conditions. Light scattering studies indicate that arginine exists as clusters in solution. In the presence of arginine, the reverse phase chromatographic elution profile of Alzheimer's amyloid beta 1-42 (Abeta(1-42)) peptide is modified. Changes in the hydrodynamic volume of Abeta(1-42) in the presence of arginine measured by size exclusion chromatography show that arginine binds to Abeta(1-42). Arginine increases the solubility of Abeta(1-42) peptide in aqueous medium. It decreases the aggregation of Abeta(1-42) as observed by atomic force microscopy. CONCLUSIONS: Based on our experimental results we propose that molecular clusters of arginine in aqueous solutions display a hydrophobic surface by the alignment of its three methylene groups. The hydrophobic surfaces present on the proteins interact with the hydrophobic surface presented by the arginine clusters. The masking of hydrophobic surface inhibits protein-protein aggregation. This mechanism is also responsible for the hydrotropic effect of arginine on various compounds. It is also explained why other amino acids fail to inhibit the protein aggregation
- …